Mean square error analysis in MIMO-OFDM system using pilot based channel estimation

Author(s):  
M. Raju ◽  
K. Ashoka Reddy
2014 ◽  
Vol 14 (2) ◽  
pp. 97-102
Author(s):  
SR Aryal ◽  
H Dhungana

There are no limit of human desire, so day by day we need much higher data speed to facilitate our need but every physical resource like frequency band, transmit signal strength are finite. Within the given limited resource, higher data speed is accomplished by new proficiency called Multiple Input Multiple Output (MIMO), Orthogonal Frequency Division Multiplexing (OFDM) system. MIMO-OFDM fulfills the high data rate requirement through spatial multiplexing gain and improved link reliability due to antenna diversity gain. With this technique, both interference reduction and maximum diversity gain are achieved by increasing number of antennae on either side. Received signal in MIMO-OFDM system is usually distorted by multipath fading. In order to recover the transmitted signal correctly, channel effect must be estimated and repaired at receiver. In this paper the performance evaluating parameter mean square error and symbol error rate of least square error, minimum mean square error and DFT based channel estimation methods are estimated and appropriate solution is recommended. Furthermore, comparison among their characteristics is simulated in MATLAB and useful conclusion is delineated. DOI: http://dx.doi.org/10.3126/njst.v14i2.10421   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 97-102


2019 ◽  
Vol 5 (3) ◽  
pp. 6 ◽  
Author(s):  
Neha Dubey ◽  
Ankit Pandit

In wireless communication, orthogonal frequency division multiplexing (OFDM) plays a major role because of its high transmission rate. Channel estimation and tracking have many different techniques available in OFDM systems. Among them, the most important techniques are least square (LS) and minimum mean square error (MMSE). In least square channel estimation method, the process is simple but the major drawback is it has very high mean square error. Whereas, the performance of MMSE is superior to LS in low SNR, its main problem is it has high computational complexity. If the error is reduced to a very low value, then an exact signal will be received. In this paper an extensive review on different channel estimation methods used in MIMO-OFDM like pilot based, least square (LS) and minimum mean square error method (MMSE) and least minimum mean square error (LMMSE) methods and also other channel estimation methods used in MIMO-OFDM are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Gaoli Zhao ◽  
Jianping Wang ◽  
Wei Chen ◽  
Junping Song

The MIMO-OFDM system fully exploits the advantages of MIMO and OFDM, effectively resisting the channel multipath fading and inter-symbol interference while increasing the data transmission rate. Studies show that it is the principal technical mean for building underwater acoustic networks (UANs) of high performance. As the core, a signal detection algorithm determines the performance and complexity of the MIMO-OFDM system. However, low computational complexity and high performance cannot be achieved simultaneously, especially for UANs with a narrow bandwidth and limited data rate. This paper presents a novel signal detection algorithm based on generalized MMSE. First, we propose a model for the underwater MIMO-OFDM system. Second, we design a signal coding method based on STBC (space-time block coding). Third, we realize the detection algorithm namely GMMSE (generalized minimum mean square error). Finally, we perform a comparison of the algorithm with ZF (Zero Forcing), MMSE (minimum mean square error), and ML (Maximum Likelihood) in terms of the BER (bit error rate) and the CC (computational complexity). The simulation results show that the BER of GMMSE is the lowest one and the CC close to that of ZF, which achieves a tradeoff between the complexity and performance. This work provides essential theoretical and technical support for implementing UANs of high performance.


2021 ◽  
Vol 16 ◽  
pp. 146-154
Author(s):  
Sidramayya S. Matad ◽  
Ramesha K.

Channel estimation is considered as an important phase in Multiple Input Multiple Output – Orthogonal Frequency Division Multiplexing (MIMO-OFDM) networks which can enhances the performance significantly. Channel estimation widely classified as pilot based, blind and semi-blind channel estimation. The pilot-based channel estimation decreases the data transmission rate and spectral efficiency. To overcome these issues of existing schemes, we present a novel blind channel estimation technique. According to proposed scheme, we transmit the data in a block-wise manner. The proposed scheme uses precoding technique to establish the correlation between these blocks. Further, we use channel correlation to solve the diagonal uncertainty of correlation matrix which helps to improve the system performance. We present a comparative analysis study which shows that proposed approach can achieve better performance in terms of Normalized Mean Square Error (NMSE) and Mean Square Error (MSE) when compared with existing techniques.


2020 ◽  
Vol 18 (1) ◽  
pp. 43-48
Author(s):  
T. Padmavathi ◽  
◽  
Dr. Kusma Kumari Cheepurupalli ◽  
Dr. R. Madhu ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document