scholarly journals SPECTROSCOPIC STUDY OF RF MAGNETRON SPUTTERING PLASMA FOR DEPOSITION TI6AL4V THIN FILM

2021 ◽  
Vol 03 (03) ◽  
pp. 103-110
Author(s):  
Dawood S. ALI ◽  
Omar M. DAWOOD

In this work, RF magnetron sputtering plasma for the deposition of Ti6Al4V thin film has been investigated by using optical emission spectroscopy at argon working pressure of 5×10-3 mbar. The emission lines intensity of the plasma were measured using a spectrometer, and the identify peaks within the selective range of patterns and matched with the standard data from the NIST website to measure the plasma parameters. Since the sputtering power plays an important role to the growth of thin film, so the effect of sputtering power of 50, 75, 100, 125 and 150Watt has been studied on produced plasma parameters. The size of Ti6Al4V sputtering target was 50mm in diameter. The argon gas flow was 40 s ccm. One can observe that the lines intensities increased with increasing the sputtering power. The plasma temperature increases from 1.86 to 2.15 eV, while its density increased from 2.69 ×1018 to 2.94 ×1018 cm-3with increasing the rf power from 50 to 150 W, which effect on sputtering rate.

2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


1997 ◽  
Vol 493 ◽  
Author(s):  
F. Ayguavives ◽  
P. Aubert ◽  
B. Ea-Kim ◽  
B. Agius

ABSTRACTLead zirconate titanate (PZT) thin films have been grown by rf magnetron sputtering on Si substrates from a metallic target of nominal composition Pb1.1(Zr0.4 Ti0.6 in a reactive argon / oxygen gas mixture. During plasma deposition, in situ Optical Emission Spectroscopy (OES) measurements show clearly a correlation between the evolution of characteristic atomic emission line intensities (Zr - 386.4 nm, Ti - 399.9 nm, Pb - 405.8 nm and O - 777.2 nm) and the thin-film composition determined by a simultaneous use of Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA).


2014 ◽  
Vol 602-603 ◽  
pp. 966-969
Author(s):  
Lei Zhang ◽  
Jian Huang ◽  
Hui Min Yang ◽  
Ke Tang ◽  
Mei Ai Lin ◽  
...  

In this work, zinc sulfide (ZnS) thin films were prepared by radio frequency (RF) magnetron sputtering on glass substrates. The effects of sputtering power, working pressure, substrate temperature and annealing treatment on the structural and optical properties of ZnS films were studied using X-ray diffraction and UV-visible spectrometer in detailed.


2018 ◽  
Vol 25 (02) ◽  
pp. 1850051 ◽  
Author(s):  
WENHAO LI

Cuprous oxide (Cu2O) thin films were produced from metallic Cu targets on [Formula: see text]-Al2O3 (000[Formula: see text]) substrate by radio frequency magnetron sputtering technology. Three batches of samples were deposited under various sputtering parameters by modulating substrate temperature, gas flow and sputtering power, respectively. The samples were characterized by X-ray diffraction and field-emission scanning electron microscopy. Through the experiment, the influences of the sputtering conditions were systematically investigated. It could be inferred that the crystallization extent and the crystal orientation in Cu2O thin films mainly depend on the temperature exchange, which contribute to the variation of the film morphology. Moreover, the gas flow has an effect on the valence of the copper ion in the film and the sputtering power mainly affects the growth rate of the films. This research promotes a more specific scheme to deposit proper Cu2O thin films with proper morphology and useful properties.


2012 ◽  
Vol 482-484 ◽  
pp. 1307-1312
Author(s):  
Tao Chen ◽  
Duo Shu Wang

Silicon oxycarbide(SiCO)thin films is a kind of glassy compound materials, which possess many potential excellent properties such as thermal stability, wide energy band, high refractive index and high hardness, and have many potential applications in space. The preparation processes of SiCO thin films by RF magnetron sputtering with different substrate temperature, working pressure and sputtering power were studied. And various surface analysis methods were used to characterize the optical properties of SiCO thin films. The dependence of the properties on the process parameters was also studied. The tested properties of SiCO thin films deposited on K9 glass indicated that lower substrate temperature and sputtering power, higher working pressure could get SiCO thin films with better light penetration and the refractive index of SiCO thin films had a large varying region with the change of the process parameters. With different substrate temperature, working pressure or sputtering power, the maximum refractive index at 633nm(wavelength) are 2.20051, 2.12072 and 1.98959, respectively, and the minimum ones are 1.89426, 1.83176 and 1.8052, respective.


2011 ◽  
Vol 675-677 ◽  
pp. 81-84
Author(s):  
Jie Yu ◽  
Wen Hui Ma ◽  
Hang Sheng Lin ◽  
Hong Yan Sun ◽  
Xiu Hua Chen ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) thin film electrolytes were fabricated on La0.7Sr0.3Cr0.5Mn0.5O3-δ (LSCM) porous anodes by radio-frequency (RF) magnetron sputtering. The formation and microstructure of LSGM thin films were characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The effects of different sputtering conditions, such as Ar gas pressure, substrate temperature and sputtering power, on the performance of LSGM electrolyte film were estimated. Dense LSGM thin film electrolytes with thickness of about 2μm, which are compatible with LSCM-based anodes and without crack, have been successfully fabricated on LSCM-based anode supports by RF magnetron sputtering when sputtering power density is 5.2W·cm-2, Ar gas pressure is 5Pa and substrate temperature is 300°C. It is found that high sputtering power density and high Ar gas pressure, as well as high substrate temperature, are beneficial to deposition of dense electrolyte thin film, close bonding of electrolyte thin film with anode substrate, and formation of large three phase boundaries between anode and electrolyte.


2015 ◽  
Vol 1110 ◽  
pp. 203-206
Author(s):  
Jeong Wan Kim ◽  
Yeong Min Park ◽  
Dae Wook Kim ◽  
Kelimu Tulugan ◽  
Tae Gyu Kim

Color glasses are fabricated with Titanium target by RF magnetron sputtering. The physical properties of the Ti thin films are investigated according to preparation conditions, such as argon and oxygen gas flow ratio, RF power and Working pressure. The results indicate that it is possible to deposits various Ti thin film’s of different colors on glass substrate, such as yellow, orange, brown, purple. The thickness according to the color was analyzed using Veeco's Stylus profiler (model: dektak 6M).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1635
Author(s):  
Md. Akhtaruzzaman ◽  
Md. Shahiduzzaman ◽  
Nowshad Amin ◽  
Ghulam Muhammad ◽  
Mohammad Aminul Islam ◽  
...  

Tungsten disulfide (WS2) thin films were deposited on soda-lime glass (SLG) substrates using radio frequency (RF) magnetron sputtering at different Ar flow rates (3 to 7 sccm). The effect of Ar flow rates on the structural, morphology, and electrical properties of the WS2 thin films was investigated thoroughly. Structural analysis exhibited that all the as-grown films showed the highest peak at (101) plane corresponds to rhombohedral phase. The crystalline size of the film ranged from 11.2 to 35.6 nm, while dislocation density ranged from 7.8 × 1014 to 26.29 × 1015 lines/m2. All these findings indicate that as-grown WS2 films are induced with various degrees of defects, which were visible in the FESEM images. FESEM images also identified the distorted crystallographic structure for all the films except the film deposited at 5 sccm of Ar gas flow rate. EDX analysis found that all the films were having a sulfur deficit and suggested that WS2 thin film bears edge defects in its structure. Further, electrical analysis confirms that tailoring of structural defects in WS2 thin film can be possible by the varying Ar gas flow rates. All these findings articulate that Ar gas flow rate is one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties, and structural properties of WS2 thin film. Finally, the simulation study validates the experimental results and encourages the use of WS2 as a buffer layer of CdTe-based solar cells.


Sign in / Sign up

Export Citation Format

Share Document