Study on the ALN Thin Film for Improving the Performance of Heat Dissipation on High Power LED Substrate

2013 ◽  
Vol 834-836 ◽  
pp. 613-616 ◽  
Author(s):  
Yang Li ◽  
Chen Kui ◽  
Hui Ren Peng ◽  
Ming Jia Zhu ◽  
Ya Wen Pan ◽  
...  

This dissertation employs the method of direct current (DC) magnetron sputtering on the reverse side of the high power LED aluminum substrate to deposit the AlN thin film. And then, we paste the high power LED beads to the front of the substrate, testing and studying the heat dissipation influences of the AlN thin film on the high-power LED beads. In order to compare easily, some parts of the reverse of aluminum substrate should be overlaid thermally conductive silicone. The result indicates that depositing the AIN thin film or the overlay thermally conductive silicone on the back side of the aluminum substrate can improve the heat dissipation capability of high power LED, the AIN thin film especially.

Author(s):  
Niklas Bönninghoff ◽  
Wahyu Diyatmika ◽  
Jinn P. Chu ◽  
Stanislav Mráz ◽  
Jochen M. Schneider ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 1909-1912 ◽  
Author(s):  
Dong Kyu Lee ◽  
Hyun Jung Park ◽  
Yu-Jung Cha ◽  
Hyeong Jin Kim ◽  
Joon Seop Kwak

2009 ◽  
Vol 1210 ◽  
Author(s):  
Ankush Halbe ◽  
Paul Johnson ◽  
Shen Jackson ◽  
Robert Weiss ◽  
Upendra Avachat ◽  
...  

AbstractA novel method to deposit Copper Indium Gallium Diselenide (CIGS) using High Power Impulse Magnetron Sputtering (HIPIMS) was demonstrated and compared to the existing DC magnetron sputtering process. The metal-ion assisted thin-film growth inherent to a HIPIMS deposition process was used to advantage in depositing CIGS films. The HIPIMS plasma was characterized by measuring ion currents on a Langmuir probe placed into the plasma sufficiently close to the substrate. The high density plasma consisting of both metal and metal ions resulted in CIGS thin-film solar cells of superior conversion efficiencies (˜13%) as compared to conventional DC magnetron sputtering (˜10%). The efficiency enhancement was attributed to the improvement in the shunt resistance of the solar cell which corresponds to the increase in the density of the CIGS layer. Furthermore, it was also possible to grow large grained CIGS (˜1 micron) with high mobility metal-ions from the HIPIMS process. The scalability potential of the HIPIMS CIGS process was also demonstrated by running a 1.5 m long Copper-Indium-Gallium rotatable in a selenium environment using a HIPIMS power supply. The cylindrical magnetron was run at an average power of 7.8 KW and peak powers of as much as 300 KW with controlled arcing. The existence of a HIPIMS plasma was confirmed by the ion currents on the Langmuir probe and the metal signals from a Plasma Emission Monitor (PEM).


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


2021 ◽  
Author(s):  
Pingfeng Wu ◽  
Runji Fang ◽  
Xuanjun Dai ◽  
Anak Agung Ayu Putri

2018 ◽  
Vol 5 (1) ◽  
pp. 2696-2704 ◽  
Author(s):  
M. Muralidhar Singh ◽  
G. Vijaya ◽  
M.S. Krupashankara ◽  
B.K. Sridhara ◽  
T.N. Shridhar

2017 ◽  
Vol 4 (5) ◽  
pp. 6466-6471 ◽  
Author(s):  
Kittikhun Seawsakul ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Viyapol Pattantsetakul ◽  
Saksorn Limwichean ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document