Energy Monitoring Using LoRaWAN-based Smart Meters and oneM2M Platform

Author(s):  
Shubham Mante ◽  
Ruthwik Muppala ◽  
D. Niteesh ◽  
Aftab M. Hussain
Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3189
Author(s):  
Sukjoon Oh ◽  
Chul Kim ◽  
Joonghyeok Heo ◽  
Sung Lok Do ◽  
Kee Han Kim

Many smart apartments and renovated residential buildings have installed Smart Meters (SMs), which collect interval data to accelerate more efficient energy management in multi-family residential buildings. SMs are widely used for electricity, but many utility companies have been working on systems for natural gas and water monitoring to be included in SMs. In this study, we analyze heating energy use data obtained from SMs for short-term monitoring and annual predictions using change-point models for the coefficient checking method. It was found that 9-month periods were required to search the best short-term heating energy monitoring periods when non-weather-related and weather-related heating loads and heating change-point temperatures are considered. In addition, the 9-month to 11-month periods were needed for the analysis to apply to other case study residences in the same high-rise apartment. For the accurate annual heating prediction, 11-month periods were necessary. Finally, the results from the heating performance analysis of this study were compared with the cooling performance analysis from a previous study. This study found that the coefficient checking method is a simple and easy-to-interpret approach to analyze interval heating energy use in multi-family residential buildings. It was also found that the period of short-term energy monitoring should be carefully selected to effectively collect targeted heating and cooling data for an energy audit or annual prediction.


2018 ◽  
Vol 18 (3) ◽  
pp. 367-380
Author(s):  
I. J. Poolo ◽  
C. R. Kikawa

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jing Zhang ◽  
Qi Liu ◽  
Lu Chen ◽  
Ye Tian ◽  
Jun Wang

With the advancement of national policies and the rise of Internet of things (IoT) technology, smart meters, smart home appliances, and other energy monitoring systems continue to appear, but due to the fixed application scenarios, it is difficult to apply to different equipment monitoring. At the same time, the limited computing resources of sensing devices make it difficult to guarantee the security in the transmission process. In order to help users better understand the energy consumption of different devices in different scenarios, we designed a nonintrusive load management based on distributed edge and secure key agreement, which uses narrowband Internet of things (NB-IoT) for transmission and uses edge devices to forward node data to provide real-time power monitoring for users. At the same time, we measured the changes of server power under different behaviors to prepare for further analysis of the relationship between server operating state and energy consumption.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4737
Author(s):  
Anna Kowalska-Pyzalska ◽  
Katarzyna Byrka ◽  
Jakub Serek

The objective of this research was to explore correlates and predictors that play a role in the process of adopting and withdrawing from using a smart metering information platform (SMP). The SMP supports energy monitoring behaviors of the electricity consumers. The literature review shows, however, that not every customer is ready to the same extent to adopt novel solutions. Adoption requires going through stages of readiness to monitor energy consumption in a household. In a longitudinal field experiment on Polish residential consumers, we aimed to see whether messages congruent with the stage of readiness in which participants declared to be at a given moment will be more effective in prompting participants to progress to the next stage than a general message or a passive control condition. We also tested the effect of attitude and knowledge about energy monitoring on phase changes. Our study reveals that what affects the phase change is the participation in the study. The longer the participants were engaged in the usage of SMP, the more willing they were to monitor their energy consumption in the future. This result sheds light on the future educational and marketing efforts of the authorities and energy suppliers.


Author(s):  
Uppuluri Sirisha ◽  
G. Lakshme Eswari

This paper briefly introduces Internet of Things(IOT) as a intellectual connectivity among the physical objects or devices which are gaining massive increase in the fields like efficiency, quality of life and business growth. IOT is a global network which is interconnecting around 46 million smart meters in U.S. alone with 1.1 billion data points per day[1]. The total installation base of IOT connecting devices would increase to 75.44 billion globally by 2025 with a increase in growth in business, productivity, government efficiency, lifestyle, etc., This paper familiarizes the serious concern such as effective security and privacy to ensure exact and accurate confidentiality, integrity, authentication access control among the devices.


Author(s):  
O. S. Galinina ◽  
S. D. Andreev ◽  
A. M. Tyurlikov

Introduction: Machine-to-machine communication assumes data transmission from various wireless devices and attracts attention of cellular operators. In this regard, it is crucial to recognize and control overload situations when a large number of such devices access the network over a short time interval.Purpose:Analysis of the radio network overload at the initial network entry stage in a machine-to-machine communication system.Results: A system is considered that features multiple smart meters, which may report alarms and autonomously collect energy consumption information. An analytical approach is proposed to study the operation of a large number of devices in such a system as well as model the settings of the random-access protocol in a cellular network and overload control mechanisms with respect to the access success probability, network access latency, and device power consumption. A comparison between the obtained analytical results and simulation data is also offered. 


Sign in / Sign up

Export Citation Format

Share Document