Image processing technology for scanning electron microscopy

Author(s):  
Oana Tutunaru ◽  
Razvan Pascu
Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Eisaku Oho ◽  
Kazuhiko Suzuki ◽  
Sadao Yamazaki

This study proposes an efficient and fast method of scanning (e.g., television (TV) scan) coupled with digital image processing technology to replace the conventional slow-scan mode as a standard model of acquisition for general-purpose scanning electron microscopy (SEM). SEM images obtained using the proposed method had the same quality in terms of sharpness and noise as slow-scan images, and it was able to suppress the adverse effects of charging in a full-vacuum condition, which is a challenging problem in this area. Two problems needed to be solved in designing the proposed method. One was suitable compensation in image quality using the inverse filter based on characteristics of the frequency of a TV-scan image, and the other to devise an accurate technique of image integration (noise suppression), the position alignment of which is robust against noise. This involved using the image montage technique and estimating the number of images needed for the integration. The final result of our TV-scan mode was compared with the slow-scan image as well as the conventional TV-scan image.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


2020 ◽  
pp. 16-23
Author(s):  
QI DAOZHENG ◽  
GU CONG ◽  
FU JIAJIA ◽  
WANG YAO

The clay-sand mixtures with diferent partcle sizes were prepared to investgate partcle and pore characteristcs. The microstructure characteristcs of the sand-clay mixtures were studied by the Mercury Intrusion Porosimetry (MIP) test and Scanning Electron Microscopy (SEM). Image-Pro Plus (IPP) image processing sofware was used to quantfy SEM images which investgated the micro-mechanism of structural evoluton of mixtures under diferent gradatons. The research results indicate that the units of mixtures develop from platelets and honeycomb to agglomerated and granular with the increase of sand content. The contact between partcles transits from face-face contacts to edge-face and pointface contacts. This artcle evaluated the fractal characteristc of partcle and pore structure based on the fractal theory. With the increase Circularity of the partcles, the ordered arrangement of the partcles in the mixed soil is further reduced. In general, the distributon of pores changes from intergranular pores to pores in aggregate, which provides a theoretcal basis for further study on the micro-macro correlaton of mixtures.


Sign in / Sign up

Export Citation Format

Share Document