Inversion electron effective mobility in SOI NMOSFETs

Author(s):  
M.J. Sherony ◽  
L.T. Su ◽  
J.E. Chung ◽  
D.A. Antoniadis
Keyword(s):  
2000 ◽  
Vol 609 ◽  
Author(s):  
Paul Stradins ◽  
Akihisa Matsuda

ABSTRACTThe drift and diffusion in the presence of charged defects and photocarriers trapped in the tail states is re-examined. In continuity equations, diffusive and drift currents are related to free particles while the Poisson equation includes all charges. In order to make use of ambipolar diffusion approximation, the mobilities and diffusion coefficients should be attributed to the total electron and hole populations making them strongly particle-number dependent. Due to the asymmetry of the conduction and valence band tails, almost all trapped electrons reside in negatively charged defects (D−). A simple model of photocarrier traffic via tail and defect states allows to establish the effective mobility values and coefficients in Einstein relations. In a photocarrier grating experiment, grating of D− is counterbalanced by the grating of trapped holes. Nevertheless, electrons remain majority carriers, allowing the measurement of minority carrier diffusion length, but analysis is needed to relate the latter with μτ product.


2016 ◽  
Vol 858 ◽  
pp. 465-468 ◽  
Author(s):  
D.P. Ettisserry ◽  
Neil Goldsman ◽  
Akin Akturk ◽  
Aivars J. Lelis

In this work, we investigate the behavior of Nitrogen atoms at 4H-Silicon Carbide (4H-SiC)/Silicon dioxide (SiO2) interface during nitric oxide passivation using ab-initio Density Functional Theory. Our calculations suggest different possible energetically favorable and competing mechanisms by which nitrogen atoms could a) incorporate themselves into the oxide, just above the 4H-SiC substrate, and b) substitute for carbon atoms at the 4H-SiC surface. We attribute the former process to cause increased threshold voltage instability (hole traps), and the latter to result in improved effective mobility through channel counter-doping, apart from removing interface traps in 4H-SiC power MOSFETs. These results support recent electrical and XPS measurements. Additionally, Nitric Oxide passivation is shown to energetically favor re-oxidation of the 4H-SiC surface accompanied by the generation of oxygen vacancies under the conditions considered in this work.


Talanta ◽  
2008 ◽  
Vol 76 (5) ◽  
pp. 1006-1014 ◽  
Author(s):  
Mónica Cecília Vargas Mamani ◽  
Jaime Amaya-Farfan ◽  
Felix Guillermo Reyes Reyes ◽  
José Alberto Fracassi da Silva ◽  
Susanne Rath

1999 ◽  
Vol 43 (4) ◽  
pp. 701-707
Author(s):  
J. Banqueri ◽  
J.A. López-Villanueva ◽  
P. Cartujo-Cassinello ◽  
S. Rodrı́guez ◽  
J.E. Carceller

2021 ◽  
Vol 26 (5) ◽  
pp. 374-386
Author(s):  
K.O. Petrosyants ◽  
◽  
D.S. Silkin ◽  
D.A. Popov ◽  
Bo Li ◽  
...  

Transition from planar MOSFET structures to FinFET 3D structures ensures various radiation type resistance. However, the characteristics of radiation-exposed devices made at different factories vary considerably and it is hard to explain FinFET structures’ radiation resistance dependence on variations of their physical and topological parameters and electrical modes. In this work, a RAD-TCAD model of FinFET on bulk silicon was developed. Additional semi-empirical radiation dependences specific to FinFET structures were introduced into the basic model of a nanometer MOSFET: the charge carrier effective mobility, the traps concentration in the SiO2 and HfO2 oxides and at the Si / SiO2 interface. The model was implemented in the Sen-taurus Synopsys TCAD environment. The model was validated on a test set of FinFET structures with a channel length from 60 nm to 7 nm before and after exposure to gamma irradiation in the dose range up to 1 Mrad. Comparison of the modeled and experimental I-V characteristics has shown an error of no more than 15 %.


2009 ◽  
Author(s):  
Elena Gnani ◽  
Antonio Gnudi ◽  
Susanna Reggiani ◽  
Giorgio Baccarani
Keyword(s):  

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Wenbin Xu ◽  
Zhihui Liu ◽  
Jie Liu ◽  
Yongfei Yang

Well test analysis requires a preselected model, which relies on the context input and the diagnostic result through the pressure logarithmic derivative curve. Transient pressure outer boundary response heavily impacts on the selection of such a model. Traditional boundary-type curves used for such diagnostic purpose are only suitable for single-phase flow in a homogeneous reservoir, while practical situations are often much more complicated. This is particularly true when transient pressure is derived during the field development phase, for example, from permanent down-hole gauge (PDG), where outer boundary condition such as an active aquifer with a transition zone above it plays a big role in dominating the late time pressure response. In this case, capillary pressure and the total mobility in the transition zone have significant effect on the pressure response. This effect is distinctly different for oil-water system and gas water system, which will result in the pressure logarithmic derivatives remarkably different from the traditional boundary-type curves. This paper presents study results derived through theoretical and numerical well testing approaches to solve this problem. The outcome of this study can help in understanding the reservoir behavior and guiding the management of mature field. According to the theoretical development by Thompson, a new approach was derived according to Darcy’s law, which shows that pressure response in the transition zone is a function of total effective mobility. For oil-water system, the total effective mobility increases with an increase in the radius of transition zone, while for gas-water system, the effect is opposite.


Sign in / Sign up

Export Citation Format

Share Document