Study on the influence of relative dielectric coefficient on the dispersion properties of horizontal shear waves (SH waves) propagating in piezoelectric plate

Author(s):  
Qing Zhang ◽  
Xiaoshan Cao ◽  
Yan Ru
2008 ◽  
Vol 33-37 ◽  
pp. 707-712 ◽  
Author(s):  
Xiao Shan Cao ◽  
Feng Jin ◽  
Zi Kun Wang

For the propagation of horizontally shear waves (SH-waves) in a functionally gradient piezoelectric material (FGPM) plate, the governing equations are established by the theory of elasticity. The Airy equations and Airy functions are applied to find the solutions of the equations. Numerical results indicate that: compared with those of SH-waves in a transversely isotropic piezoelectric plate, remarkable difference can be observed for the dispersion properties of SH-waves in a FGPM plate. Material coefficients gradient variation patterns do not affect higher modes dispersion properties of SH-waves in a FGPM plate for electrically open case. While for electrically shorted case, dispersion properties of SH-waves higher modes are affected by the material coefficients gradient variation patterns, remarkable influences can be observed for S0 mode. Influences of materials coefficients gradient variation patterns on cutoff-frequencies of SH-waves are also revealed. The results obtained are meaningful for the investigation and characterization of SH-waves in inhomogeneous media.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zhen Qu ◽  
Xiaoqin Shen ◽  
Xiaoshan Cao

Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH) waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM) and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.


Ultrasonics ◽  
2018 ◽  
Vol 84 ◽  
pp. 180-186 ◽  
Author(s):  
Xiaoqin Shen ◽  
Dawei Ren ◽  
Xiaoshan Cao ◽  
Ji Wang

2012 ◽  
Vol 627 ◽  
pp. 698-704
Author(s):  
Zhi Ying Ou ◽  
Xiao Wei Liu ◽  
Qiong Deng

When the radius of materials and structral devices reduces to nanometers, the influence of surface energy becomes prominent in its mechanical behavior. In the frame of surface elasticity, the scattering of anti-plan shear waves by an elastic half-plan with a semi-cylindrical cavity considered the surface energy are investigated in this paper. When the boundary condition at the straight edge of the half-plan is traction free, the analytical solutions of stress fields of the half plan with semi-culindrical cavity are expressed by employing a wave function expansion method. The results show that surface energy has a significant effect on the scattering of anti-plan shear waves as the radius of the semi-cylindrical cavity shrinks to nanoscale. The effects of incident waves with different frequencies and incident angel, radius of semi-cylindrical cavity and surface energy on the dynamic stress concentration around the semi-cylindrical cavity are discussed in detail.


1984 ◽  
Vol 54 (1-2) ◽  
pp. 23-34 ◽  
Author(s):  
Y. Nishida ◽  
Y. Shindo ◽  
A. Atsumi

2004 ◽  
Vol 261-263 ◽  
pp. 465-470
Author(s):  
Zheng Hua Qian ◽  
Feng Jin ◽  
Zi Kun Wang ◽  
Kikuo Kishimoto

Following the advances in structural applications, composite structures are being used commonly in transducer applications to improve acoustic, mechanical and electrical performance of piezoelectric devices. Functional composite transducers for sensors and actuators generally consist of ceramics and polymers, the disadvantage of the brittleness nature of the piezoelectric ceramics can be overcome and the structures especially good for sensing can be allowed for building up. Propagation behavior of horizontally polarized shear waves (SH-waves) in piezoelectric ceramic-polymer composites with 2-2 connectivity is taken into account. The multilayer structures are consisted of piezoelectric thin films bonded perfectly with polymeric thin films alternately. The phase velocity equations of SH-waves propagation in the piezoelectric ceramic-polymer composites with 2-2 connectivity are obtained for the cases of wave propagation in the direction perpendicular to the layering and along the layering, respectively. Filter effect of this kind of structure and the effect of volume fraction and shear modulus ratio of piezoelectric layer to polymer layer on the phase velocity are discussed in detail, respectively. One practical combination of piezoelectric thin film-polymer thin film multilayer system is chosen to carry out the numerical simulation, some basic properties of SH-waves propagation in above multilayered structures are revealed.


Author(s):  
Feng Guo ◽  
Jiu Hui Wu

Coupling resonance mechanism of interfacial fatigue stratification of adhesive and/or welding butt joint symmetric and/or antisymmetric structures excited by horizontal shear waves are investigated by forced propagation analytical solutions derived by plane wave perturbation methods, integral transformation methods and global matrix methods. The influence of materials on the coupled resonance frequency is analyzed and discussed by the analytical methods. Coupling resonance of interface shear stress is a structure inherent property. Even a very small excitation amplitude at the coupling resonance frequency can result in interface shear delamination. The coupling resonance frequency decreases with the increase of interlayer thickness or shear wave velocity difference between substrate and interlayer. The results could be applied to layered and/or anti-layered structural design.


Sign in / Sign up

Export Citation Format

Share Document