Gesture Controlled Mobile Robotic Arm for Elderly and Wheelchair People Assistance Using Kinect Sensor

Author(s):  
M. Ababneh ◽  
H. Shaban ◽  
D. AlShalabe ◽  
D. Khader ◽  
H. Mahameed ◽  
...  
Keyword(s):  
2021 ◽  
Vol 2 (3) ◽  
pp. 4094-4104
Author(s):  
Glaydson Luiz B Lima ◽  
Osamu Saotome ◽  
Ijar M. Da Fonseca

The communication subsystem is one among the various subsystems of a telerobotic space system. It is responsible for coordinating the commands received from the teleoperator control subsystem to the robotic arm, for reading signals from the sensors, and for stating the communication of the telerobot  with the ground station. The telerobotic experiment under development by the ITA space robotics research group was developed with the purpose of investigating a robotic space system dynamics and control, including  the study of the  working and integration of all subsystems involved in the teleoperation control. The lab experiment consists of two identical units of robot manipulators, each of them mounted on its own floating air-supported  platform. The objective is to simulate computationally the operations of rendezvous and capture in the microgravity' orbital environment, emulated by the floating manipulators' dynamics. The closed circuit for this system involves the in time position detection, transmission and data processing by using a position-tracking (X, Y, and Z) computer system combined with a Kinect sensor (RGB-D). The computer system comprises two computers  capable of processing the positional images with greater accuracy. One of them receive and send the sensor data to a second computer which performs the data processing by proper algorithms in Matlab® and Simulink and sends commands to the robotic arm via WIFI (UDP protocol) network. The robot receives and executes the control signals moving the robotic arms whose position is again detected by the kinect sensor and informed back to the computer system, closing the  control mesh and allowing the safe capture of the target. This work deals with the communication subsystem of the space robot experiment and its ability to set an integrated and efficient communication satisfying the telerobot control requirements


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 413
Author(s):  
Michal Tölgyessy ◽  
Martin Dekan ◽  
Ľuboš Chovanec ◽  
Peter Hubinský

The Azure Kinect is the successor of Kinect v1 and Kinect v2. In this paper we perform brief data analysis and comparison of all Kinect versions with focus on precision (repeatability) and various aspects of noise of these three sensors. Then we thoroughly evaluate the new Azure Kinect; namely its warm-up time, precision (and sources of its variability), accuracy (thoroughly, using a robotic arm), reflectivity (using 18 different materials), and the multipath and flying pixel phenomenon. Furthermore, we validate its performance in both indoor and outdoor environments, including direct and indirect sun conditions. We conclude with a discussion on its improvements in the context of the evolution of the Kinect sensor. It was shown that it is crucial to choose well designed experiments to measure accuracy, since the RGB and depth camera are not aligned. Our measurements confirm the officially stated values, namely standard deviation ≤17 mm, and distance error <11 mm in up to 3.5 meters distance from the sensor in all four supported modes. The device, however, has to be warmed up for at least 40–50 min to give stable results. Due to the time-of-flight technology, the Azure Kinect cannot be reliably used in direct sunlight. Therefore, it is convenient mostly for indoor applications.


2016 ◽  
Vol 67 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Tanja Dackermann ◽  
Ursula Fischer ◽  
Ulrike Cress ◽  
Hans-Christoph Nuerk ◽  
Korbinian Moeller

Zusammenfassung. Nicht nur in Konzepten wie der Bewegten Schule ist körperliche Bewegung zur Unterstützung des Lernens von großer Bedeutung. Inzwischen liegen erste empirische Befunde zum positiven Einfluss spezifischer körperlicher Bewegungen vor, wie zum Beispiel dem Einsatz der Finger beim Erstrechnen oder dem Laufen entlang eines Zahlenstrahls. Diese aktuellen Studien deuten darauf hin, dass Bewegung den Erwerb numerischer Konzepte unterstützen kann. Neue bewegungssensitive Eingabemedien (z. B. Tanzmatte, Kinect Sensor) ermöglichen nicht nur solche Bewegungen in der Interaktion mit einer Lernumgebung, sondern machen diese mess- und damit spezifisch nutzbar. Dadurch können Trainings realisiert werden, die gezielt den Zusammenhang von Zahlen und Raum und damit für die Ausprägung des mentalen Zahlenstrahls relevante Prozesse trainieren. Die Entwicklung solcher Trainings ist von besonderer Bedeutung, weil der mentale Zahlenstrahl wichtig für eine erfolgreiche numerisch-mathematische Entwicklung zu sein scheint. In diesem Artikel stellen wir neben den theoretischen Grundlagen eine Zusammenfassung der Ergebnisse verschiedener eigener Arbeiten zu verkörperlichten numerischen Trainings vor.


2015 ◽  
Vol 9 (2) ◽  
pp. 182
Author(s):  
Germán Buitrago Salazar ◽  
Olga Lucía Ramos ◽  
Dario Amaya

Sign in / Sign up

Export Citation Format

Share Document