Comparison of a feedback linearization controller and sliding mode controllers for a permanent magnet stepper motor

Author(s):  
Youngju Lee ◽  
Y.B. Shtessel
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Iman Ferestade ◽  
Habibollah Molatefi ◽  
Bijan Moaveni

High-speed railway vehicles operate much faster than traditional railway vehicles. After a four-axle high-speed railcar is modeled, an analytical solution is employed in this paper to solve dynamic equations. According to this analytical solution, the coupling of four-axle high-speed railcar equations depends strictly on the adhesion coefficient. A novel parallel control strategy is then formulated to prevent wheels from slipping and track the desired velocity profile. The proposed control strategy includes feedback linearization and sliding mode controllers to achieve the desired performance. Finally, the simulation results indicated the effectiveness of the proposed control system in the high-speed railcar such that the tracking error is less than 12%.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6753
Author(s):  
Subarto Kumar Ghosh ◽  
Tushar Kanti Roy ◽  
Md. Abu Hanif Pramanik ◽  
Md. Apel Mahmud

This paper proposes a composite nonlinear controller combining backstepping and double-integral sliding mode controllers for DC–DC boost converter (DDBC) feeding by constant power loads (CPLs) to improve the DC-bus voltage stability under large disturbances in DC distribution systems. In this regard, an exact feedback linearization approach is first used to transform the nonlinear dynamical model into a simplified linear system with canonical form so that it becomes suitable for designing the proposed controller. Another important feature of applying the exact feedback linearization approach in this work is to utilize its capability to cancel nonlinearities appearing due to the incremental negative-impedance of CPLs and the non-minimum phase problem related to the DDBC. Second, the proposed backstepping double integral-sliding mode controller (BDI-SMC) is employed on the feedback linearized system to determine the control law. Afterwards, the Lyapunov stability theory is used to analyze the closed-loop stability of the overall system. Finally, a simulation study is conducted under various operating conditions of the system to validate the theoretical analysis of the proposed controller. The simulation results are also compared with existing sliding mode controller (ESMC) and proportional-integral (PI) control schemes to demonstrate the superiority of the proposed BDI-SMC.


2014 ◽  
Vol 11 (3) ◽  
pp. 419-433 ◽  
Author(s):  
Amor Fezzani ◽  
Said Drid ◽  
Abdesslam Makouf ◽  
Larbi Chrifi-Alaoui ◽  
Mohamed Ouriagli

This paper is devoted to the study of the performances of a robust speed sensorless nonlinear control of permanent magnet synchronous machine. In the first part, the controllers are designed using two methods: the first one using the input output feedback linearization control and the second is a nonlinear control based on Lyapunov theory combined with sliding mode control. This second solution shows good robustness with respect to parameter variations, measurement errors and noises. In the second part, the high order sliding mode speed observer is used to overcome the occurring chattering phenomena. The super twisting algorithm is modified in order to design a speed and position observer for PMSM. Finally, simulation results are given to demonstrate the effectiveness and the good performance of the proposed control methods.


2021 ◽  
Vol 1 (2) ◽  
pp. 209-225
Author(s):  
Magdi Sadek Mahmoud ◽  
Ali H. AlRamadhan

This paper will focus on optimizing parameters of sliding mode controllers (SMC) for hybrid stepper motor models simulated in Matlab/Simulink. The main objective is to achieve a smooth transient and robust, steady-state to track reference rotor position when the stepper motor is subjected to load disturbances. Two different structures of SMC controllers will be studied, which are based on the flat system concept that is applicable to the stepper motor model. The hassle to determine controller parameters will be optimized using the Simulink Response Optimizer application.  The performance of the controllers will be evaluated by considering load torque and variation in the model parameters. Although the results showed that an open-loop controller could move the rotor to the desired position, however, the transient response had undesired oscillations before the output settled at the steady state. The response was improved by optimizing SMC controllers’ parameters to meet the desire step response requirement. Despite both SMC methods have successfully tracked the reference, there are some challenges to deal with each method in regard to the state measurements, the number of optimized controllers’ parameters, and the scattering of control inputs.


Sign in / Sign up

Export Citation Format

Share Document