WA-B2 improved high-energy response of Ga1-xAlxAs-GaAs solar cells using fluorescent capping layers

1978 ◽  
Vol 25 (11) ◽  
pp. 1355-1355
Author(s):  
H. Hovel ◽  
R.T. Hodgson ◽  
J.M. Woodall
2016 ◽  
Vol 45 (12) ◽  
pp. 6317-6322
Author(s):  
Camron D. Noorzad ◽  
Xin Zhao ◽  
Vache Harotoonian ◽  
Jerry M. Woodall

2013 ◽  
Vol 341 ◽  
pp. 181-210 ◽  
Author(s):  
S.K. Tripathi

High-energy electron, proton, neutron, photon and ion irradiation of semiconductor diodes and solar cells has long been a topic of considerable interest in the field of semiconductor device fabrication. The inevitable damage production during the process of irradiation is used to study and engineer the defects in semiconductors. In a strong radiation environment in space, the electrical performance of solar cells is degraded due to direct exposure to energetically charged particles. A considerable amount of work has been reported on the study of radiation damage in various solar cell materials and devices in the recent past. In most cases, high-energy heavy ions damage the material by producing a large amount of extended defects, but high-energy light ions are suitable for producing and modifying the intrinsic point defects. The defects can play a variety of electronically active roles that affect the electrical, structural and optical properties of a semiconductor. This review article aims to present an overview of the advancement of research in the modification of glassy semiconducting thin films using different types of radiations (light, proton and swift heavy ions). The work which has been done in our laboratory related to irradiation induced effects in semiconducting thin films will also be compared with the existing literature.


2021 ◽  
Vol 14 (3) ◽  
pp. 249-253

Abstract: In this paper, suitability of thallium sulphide films were investigated as an alternative to conventional silicon and germanium that were used as window layers in solar cells. Thin films were deposited on soda lime glass (SLG) substrates in a chemical bath containing Thallium Chloride (TlCl2) and Thiourea (NH2)2CS which was conditioned at 80 ºC for about 5 hours to deposit the films. Effects of annealing on the film samples at 300 ºC and 350 ºC were studied respectively by use of UV-VIS Avantes electrophotometer and Four-Point-Probe (FPP) machine in the light region with wavelength range from 200 nm to 1000 nm. The results obtained suggest that the thin films obtained are good materials for optoelectronics. The absorption spectra exhibited a relatively high energy band-gap. Materials of this nature are good for window layers which serve as passage to the absorber layer where needed charge carriers are produced. Keywords: Thin film, Thallium Sulphide, Window layer, Optoelectronics, Solar cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Tchouadep Guy Serge ◽  
Zouma Bernard ◽  
Korgo Bruno ◽  
Soro Boubacar ◽  
Savadogo Mahamadi ◽  
...  

The aim of this work is to study the behaviour of a silicon solar cell under the irradiation of different fluences of high-energy proton radiation (10 MeV) and under constant multispectral illumination. Many theoretical et experimental studies of the effect of irradiation (proton, gamma, electron, etc.) on solar cells have been carried out. These studies point out the effect of irradiation on the behaviour of the solar cell electrical parameters but do not explain the causes of these effects. In our study, we explain fundamentally the causes of the effects of the irradiation on the solar cells. Taking into account the empirical formula of diffusion length under the effect of high-energy particle irradiation, we established new expressions of continuity equation, photocurrent density, photovoltage, and dynamic junction velocity. Based on these equations, we studied the behaviour of some electronic and electrical parameters under proton radiation. Theoretical results showed that the defects created by the irradiation change the carrier distribution and the carrier dynamic in the bulk of the base and then influence the solar cell electrical parameters (short-circuit current, open-circuit voltage, conversion efficiency). It appears also in this study that, at low fluence, junction dynamic velocity decreases due to the presence of tunnel defects. Obtained results could lead to improve the quality of the junction of a silicon solar cell.


2016 ◽  
Vol 3 ◽  
pp. 64-85
Author(s):  
Liam Caruana ◽  
Thomas Nommensen ◽  
Toan Dinh ◽  
Dennis Tran ◽  
Robert McCormick

In the 21st century, global energy consumption has increased exponentially and hence, sustainable energy sources are essential to accommodate for this. Advancements within photovoltaics, in regards to light trapping, has demonstrated to be a promising field of dramatically improving the efficiency of solar cells. This improvement is done by using different nanostructures, which enables solar cells to use the light spectrum emitted more efficiently. The purpose of this meta study is to investigate irreversible entropic losses related to light trapping. In this respect, the observation is aimed at how nanostructures on a silicon substrate captures high energy incident photons. Furthermore, different types of nanostructures are then investigated and compared, using the étendue ratio during light trapping. It is predicted that étendue mismatching is a parasitic entropy generation variable, and that the matching has an effect on the open circuit voltage of the solar cell. Although solar cells do have their limiting efficiencies, according to the Shockley-Queisser theory and Yablonovitch limit, with careful engineering and manufacturing practices, these irreversible entropic losses could be minimized. Further research in energy losses, due to entropy generation, may guide nanostructures and photonics in exceeding past these limits.Keywords: Photovoltaic cell; Shockley-Queisser; Solar cell nanostructures; Solar cell intrinsic and extrinsic losses; entropy; étendue; light trapping; Shockley Queisser; Geometry; Meta-study


2009 ◽  
Vol 1153 ◽  
Author(s):  
Manuel J Romero ◽  
Fude Liu ◽  
Oliver Kunz ◽  
Johnson Wong ◽  
Chun-Sheng Jiang ◽  
...  

AbstractWe have investigated the local electron transport in polycrystalline silicon (pc-Si) thin-films by atomic force microscopy (AFM)-based measurements of the electron-beam-induced current (EBIC). EVA solar cells are produced at UNSW by <i>EVAporation</i> of a-Si and subsequent <i>solid-phase crystallization</i>–a potentially cost-effective approach to the production of pc-Si photovoltaics. A fundamental understanding of the electron transport in these pc-Si thin films is of prime importance to address the factors limiting the efficiency of EVA solar cells. EBIC measurements performed in combination with an AFM integrated inside an electron microscope can resolve the electron transport across individual grain boundaries. AFM-EBIC reveals that most grain boundaries present a high energy barrier to the transport of electrons for both p-type and n-type EVA thin-films. Furthermore, for p-type EVA pc-Si, in contrast with n-type, charged grain boundaries are seen. Recombination at grain boundaries seems to be the dominant factor limiting the efficiency of these pc-Si solar cells.


Sign in / Sign up

Export Citation Format

Share Document