A Fourier Series-Based Analytical Solution for Three-Dimensional Conjugate Heat Transfer Problems in Microprocessor Cooling

2008 ◽  
Vol 31 (2) ◽  
pp. 461-468 ◽  
Author(s):  
S. Ankireddi ◽  
S. Pecavar
Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2018 ◽  
Vol 941 ◽  
pp. 2278-2283
Author(s):  
Nima Bohlooli Arkhazloo ◽  
Farzad Bazdidi-Tehrani ◽  
Morin Jean-Benoit ◽  
Mohammad Jahazi

Simulation and analysis of thermal interactions during heat treatment is of great importance for accurate prediction of temperature evolution of work pieces and consequently controlling the final microstructure and mechanical properties of products. In the present study, a three-dimensional CFD model was employed to predict the heating process of large size forged ingots inside an industrial gas-fired heat treatment furnace. One-ninth section of a loaded furnace, including details such as fixing bars and high-momentum cup burners, was employed as the computational domain. The simulations were conducted using the ANSYS-FLUENT commercial CFD package. The k-ε, P-1 and Probability Density Function (PDF) in the non-premix combustion, as low computational cost numerical approaches were employed to simulate the turbulent fluid flow, thermal radiation, combustion and conjugate heat transfer inside the furnace. Temperature measurement at different locations of the forged ingot surfaces were used to validate the transient numerical simulations. Good agreement was obtained between the predictions of the CFD model and the experimental measurements, demonstrating the reliability of the proposed approach and application of the model for process optimization purposes. Detailed analysis of conjugate heat transfer together with the turbulent combustion showed that the temperature evolution of the product was significantly dependant on the furnace geometry and the severity of turbulent flow structures in the furnace.


Author(s):  
Chandrashekhar Varanasi ◽  
Jayathi Y. Murthy ◽  
Sanjay Mathur

In recent years, there has been a great deal of interest in developing meshless methods for computational fluid dynamics (CFD) applications. In this paper, a meshless finite difference method is developed for solving conjugate heat transfer problems in complex geometries. Traditional finite difference methods (FDMs) have been restricted to an orthogonal or a body-fitted distribution of points. However, the Taylor series upon which the FDM is based is valid at any location in the neighborhood of the point about which the expansion is carried out. Exploiting this fact, and starting with an unstructured distribution of mesh points, derivatives are evaluated using a weighted least squares procedure. The system of equations that results from this discretization can be represented by a sparse matrix. This system is solved with an algebraic multigrid (AMG) solver. The implementation of Neumann, Dirichlet and mixed boundary conditions within this framework is described, as well as the handling of conjugate heat transfer. The method is verified through application to classical heat conduction problems with known analytical solutions. It is then applied to the solution of conjugate heat transfer problems in complex geometries, and the solutions so obtained are compared with more conventional unstructured finite volume methods. Metrics for accuracy are provided and future extensions are discussed.


Sign in / Sign up

Export Citation Format

Share Document