Computing-Aware Base Station Sleeping Mechanism in H-CRAN-Cloud-Edge Networks

Author(s):  
Ali Alnoman ◽  
Alagan S. Anpalagan
Author(s):  
Shiwei Lai ◽  
Rui Zhao ◽  
Yulin Wang ◽  
Fusheng Zhu ◽  
Junjuan Xia

AbstractIn this paper, we study the cache prediction problem for mobile edge networks where there exist one base station (BS) and multiple relays. For the proposed mobile edge computing (MEC) network, we propose a cache prediction framework to solve the problem of contents prediction and caching based on neural networks and relay selection, by exploiting users’ history request data and channels between the relays and users. The proposed framework is then trained to learn users’ preferences by using the users’ history requested data, and several caching policies are proposed based on the channel conditions. The cache hit rate and latency are used to measure the performance of the proposed framework. Simulation results demonstrate the effectiveness of the proposed framework, which can maximize the cache hit rate and meanwhile minimize the latency for the considered MEC networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sandi Rahmadika ◽  
Muhammad Firdaus ◽  
Seolah Jang ◽  
Kyung-Hyune Rhee

Edge networks (ENs) in 5G have the capability to protect traffic between edge entry points (edge-to-edge), enabling the design of various flexible and customizable applications. The advantage of edge networks is their pioneering integration of other prominent technologies such as blockchain and federated learning (FL) to produce better services on wireless networks. In this paper, we propose an intelligent system integrating blockchain technologies, 5G ENs, and FL to create an efficient and secure framework for transactions. FL enables user equipment (UE) to train the artificial intelligence model without exposing the UE’s valuable data to the public, or to the model providers. Furthermore, the blockchain is an immutable data approach that can be leveraged for FL across 5G ENs and beyond. The recorded transactions cannot be altered maliciously, and they remain unchanged by design. We further propose a dynamic authentication protocol for UE to interact with a diverse base station. We apply blockchain as a reward mechanism in FL to enable computational offloading in wireless networks. Additionally, we implement and investigate blockchain technology for FL in 5G UE.


2021 ◽  
Author(s):  
Lubna Badri Mohammed ◽  
Alagan Anpalagan ◽  
Muhammad Jaseemuddin

<div><div><div><p>Future wireless networks provide research challenges with many fold increase of smart devices and the exponential growth in mobile data traffic. The advent of highly computational and real-time applications cause huge expansion in traffic volume. The emerging need to bring data closer to users and minimizing the traffic off the macrocell base station (MBS) introduces the use of caches at the edge of the networks. Storing most popular files at the edge of mobile edge networks (MENs) in user terminals (UTs) and small base stations (SBSs) caches is a promising approach to the challenges that face data-rich wireless networks. Caching at the mobile UT allows to obtain requested contents directly from its nearby UTs caches through the device-to- device (D2D) communication.</p><p>In this survey article, solutions for mobile edge computing and caching challenges in terms of energy and latency are presented. Caching in MENs and comparisons between different caching techniques in MENs are presented. An illustration of the research in cache development for wireless networks that apply intelligent and learning techniques (ILTs) in a specific domain in their design is presented. We summarize the challenges that face the design of caching system in MENs. Finally, some future research directions are discussed for the development of cache placement and cache access and delivery in MENs.</p></div></div></div>


2021 ◽  
Author(s):  
Lubna Badri Mohammed ◽  
Alagan Anpalagan ◽  
Muhammad Jaseemuddin

<div><div><div><p>Future wireless networks provide research challenges with many fold increase of smart devices and the exponential growth in mobile data traffic. The advent of highly computational and real-time applications cause huge expansion in traffic volume. The emerging need to bring data closer to users and minimizing the traffic off the macrocell base station (MBS) introduces the use of caches at the edge of the networks. Storing most popular files at the edge of mobile edge networks (MENs) in user terminals (UTs) and small base stations (SBSs) caches is a promising approach to the challenges that face data-rich wireless networks. Caching at the mobile UT allows to obtain requested contents directly from its nearby UTs caches through the device-to- device (D2D) communication.</p><p>In this survey article, solutions for mobile edge computing and caching challenges in terms of energy and latency are presented. Caching in MENs and comparisons between different caching techniques in MENs are presented. An illustration of the research in cache development for wireless networks that apply intelligent and learning techniques (ILTs) in a specific domain in their design is presented. We summarize the challenges that face the design of caching system in MENs. Finally, some future research directions are discussed for the development of cache placement and cache access and delivery in MENs.</p></div></div></div>


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2019 ◽  
Vol E102.B (10) ◽  
pp. 2014-2020
Author(s):  
Yancheng CHEN ◽  
Ning LI ◽  
Xijian ZHONG ◽  
Yan GUO

Sign in / Sign up

Export Citation Format

Share Document