scholarly journals $V_{t}$ Retention Distribution Tail in a Multitime-Program MLC SONOS Memory Due to a Random-Program-Charge-Induced Current-Path Percolation Effect

2012 ◽  
Vol 59 (5) ◽  
pp. 1371-1376 ◽  
Author(s):  
Yueh-Ting Chung ◽  
Tzu-I Huang ◽  
Chi-Wei Li ◽  
You-Liang Chou ◽  
Jung-Piao Chiu ◽  
...  
2011 ◽  
Vol 32 (4) ◽  
pp. 458-460 ◽  
Author(s):  
Y. L. Chou ◽  
Y. T. Chung ◽  
Tahui Wang ◽  
S. H. Ku ◽  
N. K. Zou ◽  
...  

Author(s):  
A. Buczkowski ◽  
Z. J. Radzimski ◽  
J. C. Russ ◽  
G. A. Rozgonyi

If a thickness of a semiconductor is smaller than the penetration depth of the electron beam, e.g. in silicon on insulator (SOI) structures, only a small portion of incident electrons energy , which is lost in a superficial silicon layer separated by the oxide from the substrate, contributes to the electron beam induced current (EBIC). Because the energy loss distribution of primary beam is not uniform and varies with beam energy, it is not straightforward to predict the optimum conditions for using this technique. Moreover, the energy losses in an ohmic or Schottky contact complicate this prediction. None of the existing theories, which are based on an assumption of a point-like region of electron beam generation, can be used satisfactorily on SOI structures. We have used a Monte Carlo technique which provide a simulation of the electron beam interactions with thin multilayer structures. The EBIC current was calculated using a simple one dimensional geometry, i.e. depletion layer separating electron- hole pairs spreads out to infinity in x- and y-direction. A point-type generation function with location being an actual location of an incident electron energy loss event has been assumed. A collection efficiency of electron-hole pairs was assumed to be 100% for carriers generated within the depletion layer, and inversely proportional to the exponential function of depth with the effective diffusion length as a parameter outside this layer. A series of simulations were performed for various thicknesses of superficial silicon layer. The geometries used for simulations were chosen to match the "real" samples used in the experimental part of this work. The theoretical data presented in Fig. 1 show how significandy the gain decreases with a decrease in superficial layer thickness in comparison with bulk material. Moreover, there is an optimum beam energy at which the gain reaches its maximum value for particular silicon thickness.


1983 ◽  
Vol 44 (C4) ◽  
pp. C4-305-C4-311
Author(s):  
A. Castaldini ◽  
A. Cavallini ◽  
P. Gondi

2016 ◽  
Vol 136 (3) ◽  
pp. 141-146 ◽  
Author(s):  
Akira Kawasaki ◽  
Kenichi Kubota ◽  
Ikkoh Funaki ◽  
Yoshihiro Okuno

Author(s):  
Ryan Xiao ◽  
William Wang ◽  
Ang Li ◽  
Shengqiu Xu ◽  
Binghai Liu

Abstract With the development of semiconductor technology and the increment quantity of metal layers in past few years, backside EFA (Electrical Failure Analysis) technology has become the dominant method. In this paper, abnormally high Signal Noise Ratio (SNR) signal captured by Electro-Optical Probing (EOP)/Laser Voltage Probing (LVP) from backside is shown and the cause of these phenomena are studied. Based on the real case collection, two kinds of failure mode are summarized, and simulated experiments are performed. The results indicate that when a current path from power to ground is formed, the high SNR signal can be captured at the transistor which was on this current path. It is helpful of this consequence for FA to identify the failure mode by high SNR signal.


Author(s):  
K. Sanchez ◽  
G. Bascoul ◽  
F. Infante ◽  
N. Courjault ◽  
T. Nakamura

Abstract Magnetic field imaging is a well-known technique which gives the possibility to study the internal activity of electronic components in a contactless and non-invasive way. Additional data processing can convert the magnetic field image into a current path and give the possibility to identify current flow anomalies in electronic devices. This technique can be applied at board level or device level and is particularly suitable for the failure analysis of complex packages (stacked device & 3D packaging). This approach can be combined with thermal imaging, X-ray observation and other failure analysis tool. This paper will present two different techniques which give the possibility to measure the magnetic field in two dimensions over an active device. Same device and same level of current is used for the two techniques to give the possibility to compare the performance.


Sign in / Sign up

Export Citation Format

Share Document