scholarly journals Corrections to “EM-EOF: Gap-Filling in Incomplete SAR Displacement Time Series”

2022 ◽  
Vol 60 ◽  
pp. 1-1
Author(s):  
Alexandre Hippert-Ferrer ◽  
Yajing Yan ◽  
Philippe Bolon
Keyword(s):  
2013 ◽  
Vol 10 (6) ◽  
pp. 4055-4071 ◽  
Author(s):  
S. Kandasamy ◽  
F. Baret ◽  
A. Verger ◽  
P. Neveux ◽  
M. Weiss

Abstract. Moderate resolution satellite sensors including MODIS (Moderate Resolution Imaging Spectroradiometer) already provide more than 10 yr of observations well suited to describe and understand the dynamics of earth's surface. However, these time series are associated with significant uncertainties and incomplete because of cloud cover. This study compares eight methods designed to improve the continuity by filling gaps and consistency by smoothing the time course. It includes methods exploiting the time series as a whole (iterative caterpillar singular spectrum analysis (ICSSA), empirical mode decomposition (EMD), low pass filtering (LPF) and Whittaker smoother (Whit)) as well as methods working on limited temporal windows of a few weeks to few months (adaptive Savitzky–Golay filter (SGF), temporal smoothing and gap filling (TSGF), and asymmetric Gaussian function (AGF)), in addition to the simple climatological LAI yearly profile (Clim). Methods were applied to the MODIS leaf area index product for the period 2000–2008 and over 25 sites showed a large range of seasonal patterns. Performances were discussed with emphasis on the balance achieved by each method between accuracy and roughness depending on the fraction of missing observations and the length of the gaps. Results demonstrate that the EMD, LPF and AGF methods were failing because of a significant fraction of gaps (more than 20%), while ICSSA, Whit and SGF were always providing estimates for dates with missing data. TSGF (Clim) was able to fill more than 50% of the gaps for sites with more than 60% (80%) fraction of gaps. However, investigation of the accuracy of the reconstructed values shows that it degrades rapidly for sites with more than 20% missing data, particularly for ICSSA, Whit and SGF. In these conditions, TSGF provides the best performances that are significantly better than the simple Clim for gaps shorter than about 100 days. The roughness of the reconstructed temporal profiles shows large differences between the various methods, with a decrease of the roughness with the fraction of missing data, except for ICSSA. TSGF provides the smoothest temporal profiles for sites with a % gap > 30%. Conversely, ICSSA, LPF, Whit, AGF and Clim provide smoother profiles than TSGF for sites with a % gap < 30%. Impact of the accuracy and smoothness of the reconstructed time series were evaluated on the timing of phenological stages. The dates of start, maximum and end of the season are estimated with an accuracy of about 10 days for the sites with a % gap < 10% and increases rapidly with the % gap. TSGF provides more accurate estimates of phenological timing up to a % gap < 60%.


2017 ◽  
Author(s):  
Nissaf Boudhina ◽  
Rim Zitouna-Chebbi ◽  
Insaf Mekki ◽  
Frédéric Jacob ◽  
Nétij Ben Mechlia ◽  
...  

Abstract. Estimating evapotranspiration in hilly watersheds is paramount for managing water resources, especially in semi-arid regions. Eddy covariance (EC) technique allows continuous measurements of latent heat flux LE. However, time series of EC measurements often experience large portions of missing data, because of instrumental dysfunctions or quality filtering. Existing gap-filling methods are questionable over hilly crop fields, because of changes in airflow inclination and subsequent aerodynamic properties. We evaluated the performances of different gap-filling methods before and after tailoring to conditions of hilly crop fields. The tailoring consisted of beforehand splitting the LE time series on the basis of upslope and downslope winds. The experiment was setup within an agricultural hilly watershed in northeastern Tunisia. EC measurements were collected throughout the growth cycle of three wheat crops, two of them located in adjacent fields on opposite hillslopes, and the third one located in a flat field. We considered four gap-filling methods: the REddyProc method, the linear regression between LE and net radiation Rn, the multi-linear regression of LE against the other energy fluxes, and the use of evaporative fraction EF. Regardless of method, the splitting of the LE time series did not impact the gap filling rate, and it might improve the accuracies on LE retrievals in some cases. Regardless of method, the obtained accuracies on LE estimates after gap filling were close to instrumental accuracies, and were comparable to those reported in previous studies over flat and mountainous terrains. Overall, REddyProc was the most appropriate method, for both gap filling rate and retrieval accuracy. Thus, it seems possible to conduct gap-filling for LE time series collected over hilly crop fields, provided the LE time series are beforehand split on the basis of upslope / downslope winds. Future works should address consecutive vegetation growth cycles for a larger panel of conditions in terms of climate, vegetation and water status.


2020 ◽  
Vol 127 ◽  
pp. 104666 ◽  
Author(s):  
Santiago Belda ◽  
Luca Pipia ◽  
Pablo Morcillo-Pallarés ◽  
Juan Pablo Rivera-Caicedo ◽  
Eatidal Amin ◽  
...  

2019 ◽  
Vol 235 ◽  
pp. 111452 ◽  
Author(s):  
Luca Pipia ◽  
Jordi Muñoz-Marí ◽  
Eatidal Amin ◽  
Santiago Belda ◽  
Gustau Camps-Valls ◽  
...  

2016 ◽  
Author(s):  
Jun-Whan Lee ◽  
Sun-Cheon Park ◽  
Duk Kee Lee ◽  
Jong Ho Lee

Abstract. Timely detection of tsunamis with water-level records is a critical but logistically challenging task because of outliers and gaps. We propose a tsunami arrival time detection system (TADS) that can be applied to discontinuous time-series data with outliers. TADS consists of three major algorithms that are designed to update at every new data acquisition: outlier detection, gap-filling, and tsunami detection. To detect a tsunami from a record containing outliers and gaps, we propose the concept of the event period. In this study, we applied this concept in our test of the TADS at the Ulleung-do surge gauge located in the East Sea. We calibrated the thresholds to identify tsunami arrivals based on the 2011 Tohoku tsunami, and the results show that the overall performance of TADS is effective at detecting a small tsunami signal superimposed on both an outlier and gap.


2019 ◽  
Vol 569 ◽  
pp. 573-586 ◽  
Author(s):  
Moctar Dembélé ◽  
Fabio Oriani ◽  
Jacob Tumbulto ◽  
Grégoire Mariéthoz ◽  
Bettina Schaefli

2018 ◽  
Vol 7 (2) ◽  
pp. 151-167 ◽  
Author(s):  
Nissaf Boudhina ◽  
Rim Zitouna-Chebbi ◽  
Insaf Mekki ◽  
Frédéric Jacob ◽  
Nétij Ben Mechlia ◽  
...  

Abstract. Estimating evapotranspiration in hilly watersheds is paramount for managing water resources, especially in semiarid/subhumid regions. The eddy covariance (EC) technique allows continuous measurements of latent heat flux (LE). However, time series of EC measurements often experience large portions of missing data because of instrumental malfunctions or quality filtering. Existing gap-filling methods are questionable over hilly crop fields because of changes in airflow inclination and subsequent aerodynamic properties. We evaluated the performances of different gap-filling methods before and after tailoring to conditions of hilly crop fields. The tailoring consisted of splitting the LE time series beforehand on the basis of upslope and downslope winds. The experiment was setup within an agricultural hilly watershed in northeastern Tunisia. EC measurements were collected throughout the growth cycle of three wheat crops, two of them located in adjacent fields on opposite hillslopes, and the third one located in a flat field. We considered four gap-filling methods: the REddyProc method, the linear regression between LE and net radiation (Rn), the multi-linear regression of LE against the other energy fluxes, and the use of evaporative fraction (EF). Regardless of the method, the splitting of the LE time series did not impact the gap-filling rate, and it might improve the accuracies on LE retrievals in some cases. Regardless of the method, the obtained accuracies on LE estimates after gap filling were close to instrumental accuracies, and they were comparable to those reported in previous studies over flat and mountainous terrains. Overall, REddyProc was the most appropriate method, for both gap-filling rate and retrieval accuracy. Thus, it seems possible to conduct gap filling for LE time series collected over hilly crop fields, provided the LE time series are split beforehand on the basis of upslope–downslope winds. Future works should address consecutive vegetation growth cycles for a larger panel of conditions in terms of climate, vegetation, and water status.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaosong Zhao ◽  
Yao Huang

Missing data is an inevitable problem when measuring CO2, water, and energy fluxes between biosphere and atmosphere by eddy covariance systems. To find the optimum gap-filling method for short vegetations, we review three-methods mean diurnal variation (MDV), look-up tables (LUT), and nonlinear regression (NLR) for estimating missing values of net ecosystem CO2exchange (NEE) in eddy covariance time series and evaluate their performance for different artificial gap scenarios based on benchmark datasets from marsh and cropland sites in China. The cumulative errors for three methods have no consistent bias trends, which ranged between −30 and +30 mgCO2 m−2from May to October at three sites. To reduce sum bias in maximum, combined gap-filling methods were selected for short vegetation. The NLR or LUT method was selected after plant rapidly increasing in spring and before the end of plant growing, and MDV method was used to the other stage. The sum relative error (SRE) of optimum method ranged between −2 and +4% for four-gap level at three sites, except for 55% gaps at soybean site, which also obviously reduced standard deviation of error.


Sign in / Sign up

Export Citation Format

Share Document