Adaptive Disturbance Rejection Control Scheme for DFIG-Based Wind Turbine: Theory and Experiments

2016 ◽  
Vol 52 (3) ◽  
pp. 2006-2015 ◽  
Author(s):  
Akbar Tohidi ◽  
Hadi Hajieghrary ◽  
M. Ani Hsieh
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 357 ◽  
Author(s):  
Chunlin Song ◽  
Changzhu Wei ◽  
Feng Yang ◽  
Naigang Cui

This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme.


2020 ◽  
Vol 42 (12) ◽  
pp. 2221-2233 ◽  
Author(s):  
Yun Cheng ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun

Although the heat integrated distillation is an energy-efficient and environment-friendly separation technology, it has not been commercialized. One of the reasons is that the nonlinear dynamics and the interactions between various control loops have limited the performance of the traditional control strategy. To achieve a high-purity product concentration, a dynamic decoupling control strategy based on active disturbance rejection control (ADRC) is proposed. The effects of interactions, uncertainties and external disturbances can be estimated and rejected by using extended state observer. Considering the constraints on manipulated variables, an optimized ADRC is designed for the first-order system. Moreover, a concentration observer based on a nonlinear wave model is formulated to reduce the number of sensors. In the simulation research, the related internal model control (IMC), multi-loop ADRC and model predictive control (MPC) are compared with the proposed control scheme. The simulation results demonstrate the advantages of the proposed control scheme on tight control, decoupling performance and disturbance rejection for the high-purity heat integrated distillation column.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangyang Zhou ◽  
Chao Yang ◽  
Beilei Zhao ◽  
Libo Zhao ◽  
Zhuangsheng Zhu

This paper presents a high-precision control scheme based on active disturbance rejection control (ADRC) to improve the stabilization accuracy of an inertially stabilized platform (ISP) for aerial remote sensing applications. The ADRC controller is designed to suppress the effects of the disturbance on the stabilization accuracy that consists of a tracking differentiator, a nonlinear state error feedback, and an extended state observer. By the ADRC controller, the effects of both the internal uncertain dynamics and the external multisource disturbances on the system output are compensated as a total disturbance in real time. The disturbance rejection ability of the ADRC is analyzed by simulations. To verify the method, the experiments are conducted. The results show that compared with the conventional PID controller, the ADRC has excellent capability in disturbance rejection, by which the effect of main friction disturbance on the control system can be weakened seriously and the stabilization accuracy of the ISP is improved significantly.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Wang ◽  
Xin Chen ◽  
Liyan Wen

An adaptive disturbance rejection algorithm is proposed for carrier landing system in the final-approach. The carrier-based aircraft dynamics and the linearized longitudinal model under turbulence conditions in the final-approach are analyzed. A stable adaptive control scheme is developed based on LDU decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. Finally, simulation studies of a linearized longitudinal-directional dynamics model are conducted to demonstrate the performance of the adaptive scheme.


2013 ◽  
Vol 404 ◽  
pp. 603-608
Author(s):  
Qing Bo Wu ◽  
Fu Yang Chen ◽  
Chang Yun Wen

In this paper, a self-repairing control scheme for attitude control of a quadrotor helicopter via active disturbance rejection control is proposed. Firstly, a model of the quadrotor helicopter is gained by its dynamic equations with pitch, roll and yaw axis. Then the active disturbance rejection controller is introduced, which is used to design the control system. The control system consists of PID controller in inner-loop and ADRC controller in outer-loop. Disturbances and uncertainties can be compensated by the ADRC to achieve smaller tracking error. Finally, the simulation results of the four-rotor helicopter validate the efficiency and self-repairing capability of the proposed control algorithm, compared with that of the PID control and the separate ADRC control.


Sign in / Sign up

Export Citation Format

Share Document