CLPM: A Cooperative Link Prediction Model for Industrial Internet of Things Using Partitioned Stacked Denoising Autoencoder

Author(s):  
Lanlan Rui ◽  
Yu Zhu ◽  
Zhipeng Gao ◽  
Xuesong Qiu
Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 454 ◽  
Author(s):  
Jung-Hyok Kwon ◽  
Eui-Jik Kim

This paper presents a failure prediction model using iterative feature selection, which aims to accurately predict the failure occurrences in industrial Internet of Things (IIoT) environments. In general, vast amounts of data are collected from various sensors in an IIoT environment, and they are analyzed to prevent failures by predicting their occurrence. However, the collected data may include data irrelevant to failures and thereby decrease the prediction accuracy. To address this problem, we propose a failure prediction model using iterative feature selection. To build the model, the relevancy between each feature (i.e., each sensor) and the failure was analyzed using the random forest algorithm, to obtain the importance of the features. Then, feature selection and model building were conducted iteratively. In each iteration, a new feature was selected considering the importance and added to the selected feature set. The failure prediction model was built for each iteration via the support vector machine (SVM). Finally, the failure prediction model having the highest prediction accuracy was selected. The experimental implementation was conducted using open-source R. The results showed that the proposed failure prediction model achieved high prediction accuracy.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


2021 ◽  
Vol 173 ◽  
pp. 150-159
Author(s):  
Keming Mao ◽  
Gautam Srivastava ◽  
Reza M. Parizi ◽  
Mohammad S. Khan

Sign in / Sign up

Export Citation Format

Share Document