Corrections to “Density-Invariant Registration of Multiple Scans for Aircraft Measurement”

2021 ◽  
Vol 70 ◽  
pp. 1-1
Author(s):  
Yan Wang ◽  
Yuanpeng Liu ◽  
Qian Xie ◽  
Qiaoyun Wu ◽  
Xianglin Guo ◽  
...  
Keyword(s):  
2011 ◽  
Vol 341-342 ◽  
pp. 868-872
Author(s):  
Hui Xin Zhang ◽  
Yan Lu Zheng ◽  
Yan Ran Chen ◽  
Hai Guang Yang

To match, test, and determine the working conditions and correctness of each function of the aircraft measurement system. This article proposes a design of equivalent test platform which can produce digital and analog signals for the self-testing of measurement system. By using the ethernet protocol chip W5300 to achieve the high-speed communication between host computer and equivalent device. Communication uses UDP unicast data transfer mode with advantages of high-speed and long-distance transmission, and the Phenomenon of data packet loss is not easy in transmission.


2018 ◽  
Vol 2 (4) ◽  
pp. 182-196 ◽  
Author(s):  
Lihong Ren ◽  
Renjian Zhang ◽  
Xiaoyang Yang ◽  
Chunmei Geng ◽  
Wei Wang ◽  
...  

Tellus B ◽  
2011 ◽  
Vol 55 (3) ◽  
pp. 777-786 ◽  
Author(s):  
M. Narukawa ◽  
K. Kawamura ◽  
K. Okada ◽  
Y. Zaizen ◽  
Y. Makino

2004 ◽  
Vol 4 (4) ◽  
pp. 1113-1124 ◽  
Author(s):  
A. Stohl ◽  
O. R. Cooper ◽  
R. Damoah ◽  
F. C. Fehsenfeld ◽  
C. Forster ◽  
...  

Abstract. A forecast system has been developed in preparation for an upcoming aircraft measurement campaign, where the same air parcels polluted by emissions over North America shall be sampled repeatedly as they leave the continent, during transport over the Atlantic, and upon their arrival over Europe. This paper describes the model system in advance of the campaign, in order to make the flight planners familiar with the novel model output. The aim of a Lagrangian strategy is to infer changes in the chemical composition and aerosol distribution occurring en route by measured upwind/downwind differences. However, guiding aircraft repeatedly into the same polluted air parcels requires careful forecasting, for which no suitable model system exists to date. This paper describes a procedure using both Eulerian-type (i.e. concentration fields) and Lagrangian-type (i.e. trajectories) model output from the Lagrangian particle dispersion model FLEXPART to predict the best opportunities for a Lagrangian experiment. The best opportunities are defined as being highly polluted air parcels which receive little or no emission input after the first measurement, which experience relatively little mixing, and which are reachable by as many aircraft as possible. For validation the system was applied to the period of the NARE 97 campaign where approximately the same air masses were sampled on different flights. Measured upwind/downwind differences in carbon monoxide (CO) and ozone (O3) decreased significantly as the threshold values used for accepting cases as Lagrangian were tightened. This proves that the model system can successfully identify Lagrangian opportunities.


2010 ◽  
Vol 10 (3) ◽  
pp. 1401-1402 ◽  
Author(s):  
E. Lindborg ◽  
K. K. Tung ◽  
G. D. Nastrom ◽  
J. Y. N. Cho ◽  
K. S. Gage

Abstract. Recently, Lovejoy et al. (2009) argued that the steep ~k−3 atmospheric kinetic energy spectrum at synoptic scales (≥1000 km) observed by aircraft is a spurious artefact of aircraft following isobars instead of isoheights. Without taking into account the earth's rotation they hypothesise that the horizontal atmospheric energy spectrum should scale as k−5/3 at all scales. We point out that the approximate k−3-spectrum at synoptic scales has been observed by a number of non-aircraft means since the 1960s and that general circulation models and other current models have successfully produced this spectrum. We also argue that the vertical movements of the aircraft are far too small to cause any strong effect on the measured spectrum at synoptic scales.


2014 ◽  
Vol 14 (22) ◽  
pp. 12465-12477 ◽  
Author(s):  
B. H. Samset ◽  
G. Myhre ◽  
A. Herber ◽  
Y. Kondo ◽  
S.-M. Li ◽  
...  

Abstract. Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.


Sign in / Sign up

Export Citation Format

Share Document