Formation of Nonequilibrium Magnetic Nanoparticle Structures in a Large Alternating Magnetic Field and Their Influence on Magnetic Hyperthermia Treatment

2012 ◽  
Vol 48 (11) ◽  
pp. 3258-3261 ◽  
Author(s):  
Hiroaki Mamiya ◽  
Balachandran Jeyadevan
Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1457 ◽  
Author(s):  
Huangtao Xu ◽  
Yongxin Pan

The superparamagnetic substance magnetoferritin is a potential bio-nanomaterial for tumor magnetic hyperthermia because of its active tumor-targeting outer protein shell, uniform and tunable nanosized inner mineral core, monodispersity and good biocompatibility. Here, we evaluated the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field (AMF). The effects of core-size, Fe concentration, viscosity, and field frequency and amplitude were investigated. Under 805.5 kHz and 19.5 kA/m, temperature rise (ΔT) and specific loss power (SLP) measured on magnetoferritin nanoparticles with core size of 4.8 nm at 5 mg/mL were 14.2 °C (at 6 min) and 68.6 W/g, respectively. The SLP increased with core-size, Fe concentration, AMF frequency, and amplitude. Given that: (1) the SLP was insensitive to viscosity of glycerol-water solutions and (2) both the calculated effective relaxation time and the fitted relaxation time were closer to Néel relaxation time, we propose that the heating generation mechanism of magnetoferritin nanoparticles is dominated by the Néel relaxation. This work provides new insights into the heating efficiency of magnetoferritin and potential future applications for tumor magnetic hyperthermia treatment and heat-triggered drug release.


2017 ◽  
Vol 5 (36) ◽  
pp. 7644-7660 ◽  
Author(s):  
Chalani Mandawala ◽  
Imène Chebbi ◽  
Mickael Durand-Dubief ◽  
Raphael Le Fèvre ◽  
Yasmina Hamdous ◽  
...  

Magnetic hyperthermia in which magnetic nanoparticles are introduced into tumors and exposed to an alternating magnetic field, appears to be promising.


2012 ◽  
Vol 34 (2) ◽  
pp. 95-103 ◽  
Author(s):  
Xiaowen Wang ◽  
Youping Chen ◽  
Changshuo Huang ◽  
Xufei Wang ◽  
Linyun Zhao ◽  
...  

Nano LIFE ◽  
2015 ◽  
Vol 05 (02) ◽  
pp. 1550002 ◽  
Author(s):  
K. Kekalo ◽  
I. Baker ◽  
R. Meyers ◽  
J. Shyong

This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma- Fe 2 O 3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1203
Author(s):  
Hira Fatima ◽  
Tawatchai Charinpanitkul ◽  
Kyo-Seon Kim

The activation of magnetic nanoparticles in hyperthermia treatment by an external alternating magnetic field is a promising technique for targeted cancer therapy. The external alternating magnetic field generates heat in the tumor area, which is utilized to kill cancerous cells. Depending on the tumor type and site to be targeted, various types of magnetic nanoparticles, with variable coating materials of different shape and surface charge, have been developed. The tunable physical and chemical properties of magnetic nanoparticles enhance their heating efficiency. Moreover, heating efficiency is directly related with the product values of the applied magnetic field and frequency. Protein corona formation is another important parameter affecting the heating efficiency of MNPs in magnetic hyperthermia. This review provides the basics of magnetic hyperthermia, mechanisms of heat losses, thermal doses for hyperthermia therapy, and strategies to improve heating efficiency. The purpose of this review is to build a bridge between the synthesis/coating of magnetic nanoparticles and their practical application in magnetic hyperthermia.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21702-21715
Author(s):  
M. S. Dar ◽  
Khush Bakhat Akram ◽  
Ayesha Sohail ◽  
Fatima Arif ◽  
Fatemeh Zabihi ◽  
...  

Synthesis of Fe3O4–graphene (FG) nanohybrids and magnetothermal measurements of FxG100–x (x = 0, 25, 45, 65, 75, 85, 100) nanohybrids (25 mg each) at a 633 kHz alternating magnetic field of strength 9.1 mT.


Nanoscale ◽  
2015 ◽  
Vol 7 (39) ◽  
pp. 16470-16480 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Eunjoo Kim ◽  
Sang Won Jeong ◽  
Tae-Lin Ha ◽  
Sang-Im Park ◽  
...  

The cytotoxicity of magnetic nanoparticles-conjugated polymeric micelles encapsulated with an anticancer drug on cancer cells was enhanced by the synergistic effect of heat and the rapid release of the drug under an alternating magnetic field.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1713 ◽  
Author(s):  
Niklas Lucht ◽  
Ralf P. Friedrich ◽  
Sebastian Draack ◽  
Christoph Alexiou ◽  
Thilo Viereck ◽  
...  

Magnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells. Magnetic hyperthermia describes the way that this overheating is induced and it has the inherent advantage of being a minimal invasive method when compared to traditional surgery methods. This work presents a particle system that offers huge potential for hyperthermia treatments, given its good loss value, i.e., the particles dissipate a lot of heat to their surroundings when treated with an ac magnetic field. The measurements were performed in a low-cost custom hyperthermia setup. Additional toxicity assessments on Jurkat cells show a very low short-term toxicity on the particles and a moderate low toxicity after two days due to the prevalent health concerns towards nanoparticles in organisms.


2019 ◽  
Vol 123 (26) ◽  
pp. 5506-5513 ◽  
Author(s):  
Baskar Srinivasan ◽  
Elayaraja Kolanthai ◽  
Nivethaa Eluppai Asthagiri Kumaraswamy ◽  
Ramana Ramya Jayapalan ◽  
Durga Sankar Vavilapalli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document