Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells

2012 ◽  
Vol 34 (2) ◽  
pp. 95-103 ◽  
Author(s):  
Xiaowen Wang ◽  
Youping Chen ◽  
Changshuo Huang ◽  
Xufei Wang ◽  
Linyun Zhao ◽  
...  
Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1457 ◽  
Author(s):  
Huangtao Xu ◽  
Yongxin Pan

The superparamagnetic substance magnetoferritin is a potential bio-nanomaterial for tumor magnetic hyperthermia because of its active tumor-targeting outer protein shell, uniform and tunable nanosized inner mineral core, monodispersity and good biocompatibility. Here, we evaluated the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field (AMF). The effects of core-size, Fe concentration, viscosity, and field frequency and amplitude were investigated. Under 805.5 kHz and 19.5 kA/m, temperature rise (ΔT) and specific loss power (SLP) measured on magnetoferritin nanoparticles with core size of 4.8 nm at 5 mg/mL were 14.2 °C (at 6 min) and 68.6 W/g, respectively. The SLP increased with core-size, Fe concentration, AMF frequency, and amplitude. Given that: (1) the SLP was insensitive to viscosity of glycerol-water solutions and (2) both the calculated effective relaxation time and the fitted relaxation time were closer to Néel relaxation time, we propose that the heating generation mechanism of magnetoferritin nanoparticles is dominated by the Néel relaxation. This work provides new insights into the heating efficiency of magnetoferritin and potential future applications for tumor magnetic hyperthermia treatment and heat-triggered drug release.


2017 ◽  
Vol 5 (36) ◽  
pp. 7644-7660 ◽  
Author(s):  
Chalani Mandawala ◽  
Imène Chebbi ◽  
Mickael Durand-Dubief ◽  
Raphael Le Fèvre ◽  
Yasmina Hamdous ◽  
...  

Magnetic hyperthermia in which magnetic nanoparticles are introduced into tumors and exposed to an alternating magnetic field, appears to be promising.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1203
Author(s):  
Hira Fatima ◽  
Tawatchai Charinpanitkul ◽  
Kyo-Seon Kim

The activation of magnetic nanoparticles in hyperthermia treatment by an external alternating magnetic field is a promising technique for targeted cancer therapy. The external alternating magnetic field generates heat in the tumor area, which is utilized to kill cancerous cells. Depending on the tumor type and site to be targeted, various types of magnetic nanoparticles, with variable coating materials of different shape and surface charge, have been developed. The tunable physical and chemical properties of magnetic nanoparticles enhance their heating efficiency. Moreover, heating efficiency is directly related with the product values of the applied magnetic field and frequency. Protein corona formation is another important parameter affecting the heating efficiency of MNPs in magnetic hyperthermia. This review provides the basics of magnetic hyperthermia, mechanisms of heat losses, thermal doses for hyperthermia therapy, and strategies to improve heating efficiency. The purpose of this review is to build a bridge between the synthesis/coating of magnetic nanoparticles and their practical application in magnetic hyperthermia.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21702-21715
Author(s):  
M. S. Dar ◽  
Khush Bakhat Akram ◽  
Ayesha Sohail ◽  
Fatima Arif ◽  
Fatemeh Zabihi ◽  
...  

Synthesis of Fe3O4–graphene (FG) nanohybrids and magnetothermal measurements of FxG100–x (x = 0, 25, 45, 65, 75, 85, 100) nanohybrids (25 mg each) at a 633 kHz alternating magnetic field of strength 9.1 mT.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1713 ◽  
Author(s):  
Niklas Lucht ◽  
Ralf P. Friedrich ◽  
Sebastian Draack ◽  
Christoph Alexiou ◽  
Thilo Viereck ◽  
...  

Magnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells. Magnetic hyperthermia describes the way that this overheating is induced and it has the inherent advantage of being a minimal invasive method when compared to traditional surgery methods. This work presents a particle system that offers huge potential for hyperthermia treatments, given its good loss value, i.e., the particles dissipate a lot of heat to their surroundings when treated with an ac magnetic field. The measurements were performed in a low-cost custom hyperthermia setup. Additional toxicity assessments on Jurkat cells show a very low short-term toxicity on the particles and a moderate low toxicity after two days due to the prevalent health concerns towards nanoparticles in organisms.


2019 ◽  
Vol 123 (26) ◽  
pp. 5506-5513 ◽  
Author(s):  
Baskar Srinivasan ◽  
Elayaraja Kolanthai ◽  
Nivethaa Eluppai Asthagiri Kumaraswamy ◽  
Ramana Ramya Jayapalan ◽  
Durga Sankar Vavilapalli ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3240
Author(s):  
Michael Zeinoun ◽  
Javier Domingo-Diez ◽  
Miguel Rodriguez-Garcia ◽  
Oscar Garcia ◽  
Miroslav Vasic ◽  
...  

For decades now, conventional sinusoidal signals have been exclusively used in magnetic hyperthermia as the only alternating magnetic field waveform to excite magnetic nanoparticles. However, there are no theoretical nor experimental reasons that prevent the use of different waveforms. The only justifiable motive behind using the sinusoidal signal is its availability and the facility to produce it. Following the development of a configurable alternating magnetic field generator, we aim to study the effect of various waveforms on the heat production effectiveness of magnetic nanoparticles, seeking to prove that signals with more significant slope values, such as the trapezoidal and almost-square signals, allow the nanoparticles to reach higher efficiency in heat generation. Furthermore, we seek to point out that the nanoparticle power dissipation is dependent on the waveform’s slope and not only the frequency, magnetic field intensity and the nanoparticle size. The experimental results showed a remarkably higher heat production performance of the nanoparticles when exposed to trapezoidal and almost-square signals than conventional sinusoidal signals. We conclude that the nanoparticles respond better to the trapezoidal and almost-square signals. On the other hand, the experimental results were used to calculate the normalized power dissipation value and prove its dependency on the slope. However, adjustments are necessary to the coil before proceeding with in vitro and in vivo studies to handle the magnetic fields required.


Sign in / Sign up

Export Citation Format

Share Document