Low-Power Photo-Induced Precession of Magnetization in Ultra-Thin Co/Pd Multilayer Films

2013 ◽  
Vol 49 (7) ◽  
pp. 3155-3158 ◽  
Author(s):  
K. Yamamoto ◽  
T. Matsuda ◽  
K. Nishibayashi ◽  
Y. Kitamoto ◽  
H. Munekata
Keyword(s):  
2021 ◽  
Author(s):  
Nicholas Smith ◽  
Brenden A. Magill ◽  
Rathsara R. H. H. Mudiyanselage ◽  
Hiro Munekata ◽  
Giti A. Khodaparast

2019 ◽  
Vol 9 (2) ◽  
pp. 319 ◽  
Author(s):  
Ying Ma ◽  
Denzel Bridges ◽  
Yongchao Yu ◽  
Jitai Han ◽  
Hong Li ◽  
...  

This study investigated the characteristics and strength of the dissimilar joints between carbon fiber reinforced plastic (CFRP) epoxy composites and aluminum alloys using two different heating methods, Ni/Al reactive multilayer films (RMF) and a low power continuous wave diode laser. To enhance the adhesion, the top resin layer of the CFRP and the surface of the aluminum alloy were patterned by femtosecond laser. Polycarbonate (PC) was used as a filler material during the joining processes. ANSYS simulation was applied to elucidate the thermal kinetics of the self-propagation reaction and the thermal profile, and evaluate the possibility of joining CFRP to aluminum using Ni/Al RMFs. The SEM image of the cross-section shows that melted PC flowed into the CFRP–aluminum alloy interface, suggesting strong mechanical bonding. A tensile strength of 9.5 MPa was reached using Ni/Al multilayers as heat sources, which provides a new way for joining CFRPs and aluminum alloys in space or under water.


2017 ◽  
Vol 32 (6) ◽  
pp. 065003
Author(s):  
Shiyu Chen ◽  
Weihua Wu ◽  
Jiwei Zhai ◽  
Sannian Song ◽  
Zhitang Song

Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.


2018 ◽  
Vol 49 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Petra C. Schmid

Abstract. Power facilitates goal pursuit, but how does power affect the way people respond to conflict between their multiple goals? Our results showed that higher trait power was associated with reduced experience of conflict in scenarios describing multiple goals (Study 1) and between personal goals (Study 2). Moreover, manipulated low power increased individuals’ experience of goal conflict relative to high power and a control condition (Studies 3 and 4), with the consequence that they planned to invest less into the pursuit of their goals in the future. With its focus on multiple goals and individuals’ experiences during goal pursuit rather than objective performance, the present research uses new angles to examine power effects on goal pursuit.


2019 ◽  
Vol 117 (2) ◽  
pp. 338-363 ◽  
Author(s):  
Emily J. Cross ◽  
Nickola C. Overall ◽  
Rachel S. T. Low ◽  
James K. McNulty

2004 ◽  
Vol 18 (3) ◽  
pp. 37
Author(s):  
J. Frenkil
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document