$\mu$-Synthesis-Based Adaptive Robust Control of Linear Motor Driven Stages With High-Frequency Dynamics: A Case Study

2015 ◽  
Vol 20 (3) ◽  
pp. 1482-1490 ◽  
Author(s):  
Zheng Chen ◽  
Bin Yao ◽  
Qingfeng Wang
Author(s):  
J. Q. Gong ◽  
Bin Yao

In this paper, an indirect neural network adaptive robust control (INNARC) scheme is developed for the precision motion control of linear motor drive systems. The proposed INNARC achieves not only good output tracking performance but also excellent identifications of unknown nonlinear forces in system for secondary purposes such as prognostics and machine health monitoring. Such dual objectives are accomplished through the complete separation of unknown nonlinearity estimation via neural networks and the design of baseline adaptive robust control (ARC) law for output tracking performance. Specifically, recurrent neural network (NN) structure with NN weights tuned on-line is employed to approximate various unknown nonlinear forces of the system having unknown forms to adapt to various operating conditions. The design is actual system dynamics based, which makes the resulting on-line weight tuning law much more robust and accurate than those in the tracking error dynamics based direct NNARC designs in implementation. With a controlled learning process achieved through projection type weights adaptation laws, certain robust control terms are constructed to attenuate the effect of possibly large transient modelling error for a theoretically guaranteed robust output tracking performance in general. Experimental results are obtained to verify the effectiveness of the proposed INNARC strategy. For example, for a typical point-to-point movement, with a measurement resolution level of ±1μm, the output tracking error during the entire execution period is within ±5μm and mainly stays within ±2μm showing excellent output tracking performance. At the same time, the outputs of NNs approximate the unknown forces very well allowing the estimates to be used for secondary purposes such as prognostics.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shitao Zhang ◽  
Bao Zhang ◽  
Xiantao Li ◽  
Zhengxi Wang ◽  
Feng Qian

Fast steering mirror (FSM) plays a crucial role in stabilization of the line-of-sight (LOS) and phase shift compensation. The control accuracy of the FSM is affected by various disturbances especially the vibration in the aviation environment. Traditional anti-disturbance methods, such as disturbance observer (DOB), have a little effect of suppressing disturbance in FSM. But it also brings some problem, such as increasing mass and amplifying high frequency noise. To solve these problems, an anti-disturbance strategy based on adaptive robust control (ARC) was proposed. And it will not amplify the high-frequency noise which is inevitable in DOB. Experimental results show that, using adaptive robust controller, the steady-state error of the FSM decreased 4.8 times compared to simple PID control and 1.9 times compared to DOB+PID control in the simulated vibration environment.


Sign in / Sign up

Export Citation Format

Share Document