Multi-mobile robot cluster system for robot machining of large-scale workpieces

Author(s):  
Xingwei Zhao ◽  
Bo Tao ◽  
Han Ding
2021 ◽  
Vol 71 ◽  
pp. 102153
Author(s):  
Xingwei Zhao ◽  
Bo Tao ◽  
Shibo Han ◽  
Han Ding

2014 ◽  
Vol 496-500 ◽  
pp. 1643-1647
Author(s):  
Ying Feng Wu ◽  
Gang Yan Li

IR-based large scale volume localization system (LSVLS) can localize the mobile robot working in large volume, which is constituted referring to the MSCMS-II. Hundreds cameras in LSVLS must be connected to the control station (PC) through network. Synchronization of cameras which are mounted on different control stations is significant, because the image acquisition of the target must be synchronous to ensure that the target is localized precisely. Software synchronization method is adopted to ensure the synchronization of camera. The mean value of standard deviation of eight cameras mounted on two workstations is 12.53ms, the localization performance of LSVLS is enhanced.


2020 ◽  
Vol 69 ◽  
pp. 471-500
Author(s):  
Shih-Yun Lo ◽  
Shiqi Zhang ◽  
Peter Stone

Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.


Author(s):  
Bo Tao ◽  
Xingwei Zhao ◽  
Sijie Yan ◽  
Han Ding

Safety and reliability are significant in the sense of robotic machining for large-scale workpieces. In this article, a control scheme is proposed to ensure the safe motion of the mobile robot. Screw theory is used to analyze the motion of the mobile robot. The mobile platform with Mecanum wheels can be considered as a mechanism with four driven screws in series. An auxiliary reference position of the mobile platform is calculated based on the kinematic model, and the motion of the mobile platform and robot arm can be decoupled to handle its redundant degrees of freedom. Constant speed control is investigated to reduce the interaction force between the robot and platform. Experiments are conducted on the mobile robotic machining task for a large-scale wind turbine blade. The mobile robot moves steadily and smoothly owing to the constant speed control with an auxiliary target.


2002 ◽  
Vol 35 (1) ◽  
pp. 341-346
Author(s):  
Juan A. Fernández ◽  
Javier González
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document