Design method of highway traffic safety analysis model

Author(s):  
Zhigang Yan ◽  
Xueli Wang ◽  
Lifeng Du
2007 ◽  
Vol 35 (2) ◽  
pp. 70-93
Author(s):  
Marion G. Pottinger ◽  
Joseph D. Walter ◽  
John D. Eagleburger

Abstract The Congress of the United States petitioned the Transportation Research Board of the National Academy of Sciences to study replacement passenger car tire rolling resistance in 2005 with funding from the National Highway Traffic Safety Administration. The study was initiated to assess the potential for reduction in replacement tire rolling resistance to yield fuel savings. The time required to realize these savings is less than the time required for automotive and light truck fleet replacement. Congress recognized that other factors besides fuel savings had to be considered if the committee’s advice was to be a reasonable guide for public policy. Therefore, the study simultaneously considered the effect of potential rolling resistance reductions in replacement tires on fuel consumption, wear life, scrap tire generation, traffic safety, and consumer spending for tires and fuel. This paper summarizes the committee’s report issued in 2006. The authors, who were members of the multidisciplinary committee, also provide comments regarding technical difficulties encountered in the committee’s work and ideas for alleviating these difficulties in further studies of this kind. The authors’ comments are clearly differentiated so that these comments will not be confused with findings, conclusions, and recommendations developed by the committee and contained in its final report.


1981 ◽  
Vol 9 (1) ◽  
pp. 19-25 ◽  
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract Belted bias and radial Course Monitoring Tires were run over the National Highway Traffic Safety Administration tread wear course at San Angelo on a vehicle instrumented to measure lateral and longitudinal accelerations, speed, and number of wheel rotations. The data were recorded as histograms. The distribution of speed, the distributions of lateral and longitudinal acceleration, and the number of acceleration level crossings are given. Acceleration data for segments of the course are also given.


Author(s):  
Zhenxu Zhou ◽  
Hao Nie ◽  
Chunling Dong ◽  
Qin Zhang

Failure Modes and Effects Analysis (FMEA) is a useful tool to find possible flaws, to reduce cost and to shorten research cycle in complex industrial systems. Fault Tree Analysis (FTA) has gained credibility over the past years, not only in nuclear industry, but also in other industries like aerospace, petrochemical, and weapon. Both FMEA and FTA are effective techniques in safety analysis, but there are still many uncertain factors in them that are not well addressed until now. This paper combines FMEA and FTA based on Dynamic Uncertain Causality Graph (DUCG) to solve this issue. Firstly, the FMEA model is mapped into a corresponding DUCG graph. Secondly, FTA model is mapped into a corresponding DUCG graph. Thirdly, combine the above DUCG graphs. Finally, users can modify the combined DUCG graph and calculations are made. This paper bridges the gap between FMEA and FTA by combining the two methods using DUCG. And additional modeling power and analytical power can be achieved with the advantages of the combined DUCG safety analysis model and its inference algorithm. This method can also promote the application of DUCG in the system reliability and safety analysis. An example is used to illustrate this method.


2011 ◽  
Vol 332-334 ◽  
pp. 1162-1166
Author(s):  
Zhuo Zhang ◽  
Ying Qing Liu ◽  
Zhong Hai Ren ◽  
Jia Zhuang Ma ◽  
Hu Shui Ye

The flammability is one of the most important features about safety for automotive interior material. This paper summarized the testing standards for flammability performed testing on a type of interior textile material made by one of domestic manufacturers, in accordance with the Chart 571.302 Standard No. 302 of the National Highway Traffic Safety Administration of U.S. The complete introduction of national mandatory standard of China in flammability of interior material was introduced and domestic test standards of flammability with those of foreign countries all over world were compared. Finally, this paper proposed possible and would-be necessary parameters based on comprehensiveness of this kind of test due to safer requirement in future.


1996 ◽  
Vol 11 (S2) ◽  
pp. S41-S41
Author(s):  
John E. Gough ◽  
Richard C. Hunt

Purpose: To determine the most frequent sources of injuries from the interior of motor vehicles involved in crashes.Methods: We searched the National Highway Traffic Safety Administration's National Accident Sampling System to determine the most frequent sources of injuries. This database includes sources of injuries resulting from crashes from January 1, 1991 to December 31, 1992.


Author(s):  
Frederik Naujoks ◽  
Sebastian Hergeth ◽  
Katharina Wiedemann ◽  
Nadja Schömig ◽  
Andreas Keinath

Reflecting the increasing demand for harmonization of human machine interfaces (HMI) of automated vehicles, different taxonomies of use cases for investigating automated driving systems (ADS) have been proposed. Existing taxonomies tend to serve specific purposes such as categorizing transitions between automation modes; however, they cannot be generalized to different systems or combinations of systems. In particular, there is no exhaustive set of use cases that allows entities to assess and validate the HMI of a given ADS that takes into account all possible system modes and transitions. The present paper describes a newly developed framework based on combinatorics of SAE (Society of Automotive Engineers) automation levels that incorporates a comprehensive taxonomy of use cases required for the assessment and validation of ADS HMIs. This forms a much-needed basis for test methods required to verify whether an HMI meets minimum requirements such as those outlined in the National Highway Traffic Safety Administration’s Federal Automated Vehicles policy.


Sign in / Sign up

Export Citation Format

Share Document