Detection and Characterization of Network Anomalies in Large-Scale RTT Time Series

Author(s):  
Bingnan Hou ◽  
Changsheng Hou ◽  
Tongqing Zhou ◽  
Zhiping Cai ◽  
Fang Liu
RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Marcus Suassuna Santos ◽  
Veber Afonso Figueiredo Costa ◽  
Wilson dos Santos Fernandes ◽  
Rafael Pedrollo de Paes

ABSTRACT This paper focuses on time-space characterization of drought conditions in the São Francisco River catchment, on the basis of wavelet analysis of Standardized Precipitation Index (SPI) time series. In order to improve SPI estimation, the procedures for regional analysis with L-moments were employed for defining statistically homogeneous regions. The continuous wavelet transform was then utilized for extracting time-frequency information from the resulting SPI time series in a multiresolution framework and for investigating possible teleconnections of these signals with those obtained from samples of the large-scale climate indexes ENSO and PDO. The use of regional frequency analysis with L-moments resulted in improvements in the estimation of SPI time series. It was observed that by aggregating regional information more reliable estimates of low frequency rainfall amounts were obtained. The wavelet analysis of climate indexes suggests that the more extreme dry periods in the study area are observed when the cold phase of both ENSO and the PDO coincides. While not constituting a strict cause effect relationship, it was clear that the more extreme droughts are consistently observed in this situation. However, further investigation is necessary for identifying particularities in rainfall patterns that are not associated to large-scale climate anomalies.


2007 ◽  
Vol 17 (07) ◽  
pp. 2477-2483 ◽  
Author(s):  
D. REMONDINI ◽  
N. NERETTI ◽  
C. FRANCESCHI ◽  
P. TIERI ◽  
J. M. SEDIVY ◽  
...  

We address the problem of finding large-scale functional and structural relationships between genes, given a time series of gene expression data, namely mRNA concentration values measured from genetically engineered rat fibroblasts cell lines responding to conditional cMyc proto-oncogene activation. We show how it is possible to retrieve suitable information about molecular mechanisms governing the cell response to conditional perturbations. This task is complex because typical high-throughput genomics experiments are performed with high number of probesets (103–104 genes) and a limited number of observations (< 102 time points). In this paper, we develop a deepest analysis of our previous work [Remondini et al., 2005] in which we characterized some of the main features of a gene-gene interaction network reconstructed from temporal correlation of gene expression time series. One first advancement is based on the comparison of the reconstructed network with networks obtained from randomly generated data, in order to characterize which features retrieve real biological information, and which are instead due to the characteristics of the network reconstruction method. The second and perhaps more relevant advancement is the characterization of the global change in co-expression pattern following cMyc activation as compared to a basal unperturbed state. We propose an analogy with a physical system in a critical state close to a phase transition (e.g. Potts ferromagnet), since the cell responds to the stimulus with high susceptibility, such that a single gene activation propagates to almost the entire genome. Our result is relative to temporal properties of gene network dynamics, and there are experimental evidence that this can be related to spatial properties regarding the global organization of chromatine structure [Knoepfler et al., 2006].


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Author(s):  
H.W. Ho ◽  
J.C.H. Phang ◽  
A. Altes ◽  
L.J. Balk

Abstract In this paper, scanning thermal conductivity microscopy is used to characterize interconnect defects due to electromigration. Similar features are observed both in the temperature and thermal conductivity micrographs. The key advantage of the thermal conductivity mode is that specimen bias is not required. This is an important advantage for the characterization of defects in large scale integrated circuits. The thermal conductivity micrographs of extrusion, exposed and subsurface voids are presented and compared with the corresponding topography and temperature micrographs.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


Sign in / Sign up

Export Citation Format

Share Document