Monitoring Neuro-Motor Recovery From Stroke With High-Resolution EEG, Robotics and Virtual Reality: A Proof of Concept

Author(s):  
Silvia Comani ◽  
Lucia Velluto ◽  
Lorenzo Schinaia ◽  
Gianluigi Cerroni ◽  
Antonio Serio ◽  
...  
2013 ◽  
Vol 43 (1) ◽  
pp. 76 ◽  
Author(s):  
M. Steinisch ◽  
M.G. Tana ◽  
B. Guarnieri ◽  
G. Cerroni ◽  
A. Serio ◽  
...  

2004 ◽  
Author(s):  
Vaibhav Govil ◽  
Stacy Lovell ◽  
Piriyakala Suresh ◽  
Qiong Wu ◽  
Guihua Yang ◽  
...  

Author(s):  
Shida Tan ◽  
Richard H. Livengood ◽  
Dane Scott ◽  
Roy Hallstein ◽  
Pat Pardy ◽  
...  

Abstract High resolution optical imaging is critical in assisting backside circuit edit (CE) and optical probing navigation. In this paper, we demonstrated improved optical image quality using VIS-NIR narrow band light emitting diode (LED) illumination in various FIB and optical probing platforms. The proof of concept was demonstrated with both common non-contact air gap lenses and solid immersion lenses (SIL).


2019 ◽  
Vol 18 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Antonio Ibarra ◽  
Erika Mendieta-Arbesú ◽  
Paola Suarez-Meade ◽  
Elisa García-Vences ◽  
Susana Martiñón ◽  
...  

Background: The chronic phase of Spinal Cord (SC) injury is characterized by the presence of a hostile microenvironment that causes low activity and a progressive decline in neurological function; this phase is non-compatible with regeneration. Several treatment strategies have been investigated in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study, we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition, accompanied with implantation of mesenchymal stem cells (MSC), and immunization with neural-derived peptides (INDP). Methods: This study was divided into three subsets, all in which Sprague Dawley rats were subjected to a complete SC transection. Sixty days after injury, animals were randomly allocated into two groups for therapeutic intervention: control group and animals receiving the Comb-Tx. Sixty-three days after treatment we carried out experiments analyzing motor recovery, presence of somatosensory evoked potentials, neural regeneration-related genes, and histological evaluation of serotoninergic fibers. Results: Comb-Tx induced a significant locomotor and electrophysiological recovery. An increase in the expression of regeneration-associated genes and the percentage of 5-HT+ fibers was noted at the caudal stump of the SC of animals receiving the Comb-Tx. There was a significant correlation of locomotor recovery with positive electrophysiological activity, expression of GAP43, and percentage of 5-HT+ fibers. Conclusion: Comb-Tx promotes motor and electrophysiological recovery in the chronic phase of SC injury subsequent to a complete transection. Likewise, it is capable of inducing the permissive microenvironment to promote axonal regeneration.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Tao Zhan ◽  
En-Lin Hsiang ◽  
Kun Li ◽  
Shin-Tson Wu

We demonstrate a light efficient virtual reality (VR) near-eye display (NED) design based on a directional display panel and a diffractive deflection film (DDF). The DDF was essentially a high-efficiency Pancharatnam-Berry phase optical element made of liquid crystal polymer. The essence of this design is directing most of the display light into the eyebox. The proposed method is applicable for both catadioptric and dioptric VR lenses. A proof-of-concept experiment was conducted with off-the-shelf optical parts, where the light efficiency was enhanced by more than 2 times.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 999
Author(s):  
Henry Dore ◽  
Rodrigo Aviles-Espinosa ◽  
Zhenhua Luo ◽  
Oana Anton ◽  
Heike Rabe ◽  
...  

Heart rate monitoring is the predominant quantitative health indicator of a newborn in the delivery room. A rapid and accurate heart rate measurement is vital during the first minutes after birth. Clinical recommendations suggest that electrocardiogram (ECG) monitoring should be widely adopted in the neonatal intensive care unit to reduce infant mortality and improve long term health outcomes in births that require intervention. Novel non-contact electrocardiogram sensors can reduce the time from birth to heart rate reading as well as providing unobtrusive and continuous monitoring during intervention. In this work we report the design and development of a solution to provide high resolution, real time electrocardiogram data to the clinicians within the delivery room using non-contact electric potential sensors embedded in a neonatal intensive care unit mattress. A real-time high-resolution electrocardiogram acquisition solution based on a low power embedded system was developed and textile embedded electrodes were fabricated and characterised. Proof of concept tests were carried out on simulated and human cardiac signals, producing electrocardiograms suitable for the calculation of heart rate having an accuracy within ±1 beat per minute using a test ECG signal, ECG recordings from a human volunteer with a correlation coefficient of ~ 87% proved accurate beat to beat morphology reproduction of the waveform without morphological alterations and a time from application to heart rate display below 6 s. This provides evidence that flexible non-contact textile-based electrodes can be embedded in wearable devices for assisting births through heart rate monitoring and serves as a proof of concept for a complete neonate electrocardiogram monitoring system.


Sign in / Sign up

Export Citation Format

Share Document