Hash Transformation and Machine Learning-Based Decision-Making Classifier Improved the Accuracy Rate of Automated Parkinson’s Disease Screening

Author(s):  
Tsung-Lung Yang ◽  
Chia-Hung Lin ◽  
Wei-Ling Chen ◽  
Hsin-Yu Lin ◽  
Chen-San Su ◽  
...  
2020 ◽  
Vol 20 (1) ◽  
pp. 501-514 ◽  
Author(s):  
Tsung-Lung Yang ◽  
Ping-Ju Kan ◽  
Chia-Hung Lin ◽  
Hsin-Yu Lin ◽  
Wei-Ling Chen ◽  
...  

Parkinson's disease is a neurodegenerative disorder that affects millions of people around the globe. Detecting Parkinson's disease at an earlier stage could help to better diagnose the disease. Machine learning provides potentially large opportunities for computer-aided identification and diagnosis that could minimize unavoidable health care errors and inherent clinical uncertainty, provide guidance, and improve decision-making. In this paper, we explore the feature extraction and prediction algorithms used to predict Parkinson's disease and provide a comprehensive comparison of these algorithms


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Javier Carrón ◽  
Yolanda Campos-Roca ◽  
Mario Madruga ◽  
Carlos J. Pérez

Abstract Background and objective Automatic voice condition analysis systems to detect Parkinson’s disease (PD) are generally based on speech data recorded under acoustically controlled conditions and professional supervision. The performance of these approaches in a free-living scenario is unknown. The aim of this research is to investigate the impact of uncontrolled conditions (realistic acoustic environment and lack of supervision) on the performance of automatic PD detection systems based on speech. Methods A mobile-assisted voice condition analysis system is proposed to aid in the detection of PD using speech. The system is based on a server–client architecture. In the server, feature extraction and machine learning algorithms are designed and implemented to discriminate subjects with PD from healthy ones. The Android app allows patients to submit phonations and physicians to check the complete record of every patient. Six different machine learning classifiers are applied to compare their performance on two different speech databases. One of them is an in-house database (UEX database), collected under professional supervision by using the same Android-based smartphone in the same room, whereas the other one is an age, sex and health-status balanced subset of mPower study for PD, which provides real-world data. By applying identical methodology, single-database experiments have been performed on each database, and also cross-database tests. Cross-validation has been applied to assess generalization performance and hypothesis tests have been used to report statistically significant differences. Results In the single-database experiments, a best accuracy rate of 0.92 (AUC = 0.98) has been obtained on UEX database, while a considerably lower best accuracy rate of 0.71 (AUC = 0.76) has been achieved using the mPower-based database. The cross-database tests provided very degraded accuracy metrics. Conclusion The results clearly show the potential of the proposed system as an aid for general practitioners to conduct triage or an additional tool for neurologists to perform diagnosis. However, due to the performance degradation observed using data from mPower study, semi-controlled conditions are encouraged, i.e., voices recorded at home by the patients themselves following a strict recording protocol and control of the information about patients by the medical doctor at charge.


2020 ◽  
Vol 13 (5) ◽  
pp. 508-523 ◽  
Author(s):  
Guan‐Hua Huang ◽  
Chih‐Hsuan Lin ◽  
Yu‐Ren Cai ◽  
Tai‐Been Chen ◽  
Shih‐Yen Hsu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandre Boutet ◽  
Radhika Madhavan ◽  
Gavin J. B. Elias ◽  
Suresh E. Joel ◽  
Robert Gramer ◽  
...  

AbstractCommonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming.


Sign in / Sign up

Export Citation Format

Share Document