Classification of Rhythmic Cortical Activity Elicited by Whole-Body Balance Perturbations Suggests the Cortical Representation of Direction-Specific Changes in Postural Stability

2020 ◽  
Vol 28 (11) ◽  
pp. 2566-2574
Author(s):  
Teodoro Solis-Escalante ◽  
Digna De Kam ◽  
Vivian Weerdesteyn
2021 ◽  
Vol 2 ◽  
Author(s):  
Oliver Seidel-Marzi ◽  
Susanne Hähner ◽  
Patrick Ragert ◽  
Daniel Carius

The ability to maintain balance is based on various processes of motor control in complex neural networks of subcortical and cortical brain structures. However, knowledge on brain processing during the execution of whole-body balance tasks is still limited. In the present study, we investigated brain activity during slacklining, a task with a high demand on balance capabilities, which is frequently used as supplementary training in various sports disciplines as well as for lower extremity prevention and rehabilitation purposes in clinical settings. We assessed hemodynamic response alterations in sensorimotor brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST) and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe task-related differences between both conditions as well as associations between cortical activity and slacklining experience. While our results revealed hemodynamic response alterations in sensorimotor brain regions such as primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions, we did not observe differential effects between ST and WA nor associations between cortical activity and slacklining experience. In summary, these findings provide novel insights into brain processing during a whole-body balance task and its relation to balance expertise. As maintaining balance is considered an important prerequisite in daily life and crucial in the context of prevention and rehabilitation, future studies should extend these findings by quantifying brain processing during task execution on a whole-brain level.


Author(s):  
Joanna M. Bukowska ◽  
Małgorzata Jekiełek ◽  
Dariusz Kruczkowski ◽  
Tadeusz Ambroży ◽  
Jarosław Jaszczur-Nowicki

Background: The aim of the study is to assess the body balance and podological parameters and body composition of young footballers in the context of the control of football training. Methods: The study examined the distribution of the pressure of the part of the foot on the ground, the arch of the foot, and the analysis of the body composition of the boys. The pressure center for both feet and the whole body was also examined. The study involved 90 youth footballers from Olsztyn and Barczewo in three age groups: 8–10 years, 11–13 years old, and 14–16 years. The study used the Inbody 270 body composition analyzer and the EPSR1, a mat that measures the pressure distribution of the feet on the ground. Results: The results showed statistically significant differences in almost every case for each area of the foot between the groups of the examined boys. The most significant differences were observed for the metatarsal area and the left heel. In the case of stabilization of the whole body, statistically significant differences were noted between all study groups. In the case of the body composition parameters, in the examined boys, a coherent direction of changes was noticed for most of them. The relationships and correlations between the examined parameters were also investigated. The significance level in the study was set at p < 0.05. Conclusions: Under the training rigor, a statistically significant increase in stability was observed with age. The total length of the longitudinal arch of both feet of the examined boys showed a tendency to flatten in direct proportion to the age of the examined boys. Mean values of the body composition parameters reflect changes with the ontogenetic development, basic somatic parameters (body height and weight) and training experience, and thus with the intensity and volume of training. This indicates a correct training process that does not interfere with the proper development of the body in terms of tissue and biochemical composition.


2006 ◽  
Vol 82 (6) ◽  
pp. 929-935 ◽  
Author(s):  
T. Nishioka ◽  
M. Irie

AbstractFat quality, in particular, firmness is a main contributor to meat appearance, shelf life, taste, and human health. The current study was conducted to examine the fluctuation and criteria of porcine fat firmness. Several physiochemical methods were performed on 237 porcine perirenal fat samples that were obtained randomly from a commercial market. The relationship between perirenal fat and the middle subcutaneous fat layer was investigated to predict carcass fat quality. Each physiochemical property of the perirenal fat showed considerable variation as a 40-fold difference in firmness was observed between the most extreme samples. Differences between these extremes were 19°C in melting point, 0·0043 for refractive index, and 18 g per 100 g fatty acid methyl esters for saturated fatty acids (SFA) concentration. Strong curvilinear relationships were found between Instron and sensory firmness scores (R=0·90–0·96, no.=24). On the basis of these relationships, classification of the perirenal fats obtained from the commercial market was defined. Fats possessing firmness values of less than 7 N have undesirable fat quality, whereas fat samples with values greater than 16 N were not popular in the market. From these data, we conclude that fats of 7–16 N in firmness value were preferred by consumers. Firmness values of perirenal fat samples correlated significantly with the stearic acid (C18:0) and SFA concentrations of samples of the middle subcutaneous fat layer (r=0·68, 0·57, P<0·01). These results indicate that there are wide fluctuations in the porcine fat quality, and that fats ranging in Instron firmness values between 7 and 16 N are most acceptable to consumers. And, subcutaneous fat may prove to be a valuable indicator of whole body pork fat quality.


2004 ◽  
Vol 14 (6) ◽  
pp. 467-478 ◽  
Author(s):  
Chris A. McGibbon ◽  
David E. Krebs ◽  
Steven L. Wolf ◽  
Peter M. Wayne ◽  
Donna Moxley Scarborough ◽  
...  

Tai Chi (TC) is a comparatively new intervention for peripheral vestibular hypofunction, which is often treated with vestibular rehabilitation (VR). We compared gaze stability (GZS), whole-body stability (WBS) and footfall stability (FFS) during locomotion among 26 people with vestibulopathy (VSP), randomized into two treatment arms (13 TC and 13 VR). Each intervention program was offered for 10 weeks. GZS improved more for VR than for TC, but WBS (and FFS) improved more for TC than for VR. There was a significant relationship between changes in GZS and WBS for the VR subjects (r = 0.60, p = 0.01), but not for TC subjects. There was a significant relationship between changes in WBS and FFS for both VR (r = 0.65, p < 0.01) and TC (r = 0.58, p = 0.02) groups; the relationship disappeared in the VR but not the TC group when controlling for GZS. These findings suggest that VR and TC both benefit patients with VSP but via differing mechanisms. Moreover, these data are the first to test the assumption that improving gaze control among patients with VSP perforce improves postural stability: it does not. We conclude that GZS is most improved in those who receive VR, but that TC improves WBS and FFS without improving GZS, suggesting patients with VSP can rely on non-gaze related mechanisms to improve postural control.


Author(s):  
Satoshi Matsuno ◽  
Takuya Yoshiike ◽  
Atsushi Yoshimura ◽  
Sachiyo Morita ◽  
Yusuke Fujii ◽  
...  

Although standing plantar perception training (SPPT) may improve standing postural stability, the underlying neural mechanisms remain unclear. The authors investigated the relationship between regional cortical responses to SPPT using a balance pad and training outcomes in 32 older participants (mean ± SD:72.2 ± 6.0, range:60–87). Regional cortical activity was measured in the bilateral supplementary motor area, primary sensorimotor area, and parietal association area using near-infrared spectroscopy. Postural sway changes were compared before and after SPPT. Changes in two-point plantar discrimination and regional cortical activity during SPPT, associated with standing postural stability improvements, were examined using multiple regression and indicated improved standing postural stability after SPPT (p < .0001). Changes in right parietal association area activity were associated with standing postural stability improvements while barefoot. Overall, the results suggest that right parietal association area activation during SPPT plays a crucial role in regulating standing postural stability and may help develop strategies to prevent older adults from falling.


2017 ◽  
Vol 60 ◽  
pp. 3-10 ◽  
Author(s):  
Lei Bi ◽  
Jinman Kim ◽  
Ashnil Kumar ◽  
Lingfeng Wen ◽  
Dagan Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document