A Effective Method Using Wavelet Transform for Haze and Noisy Image

Author(s):  
Zeli Wang ◽  
Xiaoting Liu ◽  
Xiaomei Zhang
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Min Wang ◽  
Wei Yan ◽  
Shudao Zhou

Singular value (SV) difference is the difference in the singular values between a noisy image and the original image; it varies regularly with noise intensity. This paper proposes an image denoising method using the singular value difference in the wavelet domain. First, the SV difference model is generated for different noise variances in the three directions of the wavelet transform and the noise variance of a new image is used to make the calculation by the diagonal part. Next, the single-level discrete 2-D wavelet transform is used to decompose each noisy image into its low-frequency and high-frequency parts. Then, singular value decomposition (SVD) is used to obtain the SVs of the three high-frequency parts. Finally, the three denoised high-frequency parts are reconstructed by SVD from the SV difference, and the final denoised image is obtained using the inverse wavelet transform. Experiments show the effectiveness of this method compared with relevant existing methods.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 343
Author(s):  
Fangfang Han ◽  
Bin Liu ◽  
Junchao Zhu ◽  
Baofeng Zhang

For some measurement and detection applications based on video (sequence images), if the exposure time of camera is not suitable with the motion speed of the photographed target, fuzzy edges will be produced in the image, and some poor lighting condition will aggravate this edge blur phenomena. Especially, the existence of noise in industrial field environment makes the extraction of fuzzy edges become a more difficult problem when analyzing the posture of a high-speed moving target. Because noise and edge are always both the kind of high-frequency information, it is difficult to make trade-offs only by frequency bands. In this paper, a noise-tolerant edge detection method based on the correlation relationship between layers of wavelet transform coefficients is proposed. The goal of the paper is not to recover a clean image from a noisy observation, but to make a trade-off judgment for noise and edge signal directly according to the characteristics of wavelet transform coefficients, to realize the extraction of edge information from a noisy image directly. According to the wavelet coefficients tree and the Lipschitz exponent property of noise, the idea of neural network activation function is adopted to design the activation judgment method of wavelet coefficients. Then the significant wavelet coefficients can be retained. At the same time, the non-significant coefficients were removed according to the method of judgment of isolated coefficients. On the other hand, based on the design of Daubechies orthogonal compactly-supported wavelet filter, rational coefficients wavelet filters can be designed by increasing free variables. By reducing the vanishing moments of wavelet filters, more high-frequency information can be retained in the wavelet transform fields, which is benefit to the application of edge detection. For a noisy image of high-speed moving targets with fuzzy edges, by using the length 8-4 rational coefficients biorthogonal wavelet filters and the algorithm proposed in this paper, edge information could be detected clearly. Results of multiple groups of comparative experiments have shown that the edge detection effect of the proposed algorithm in this paper has the obvious superiority.


2012 ◽  
Vol 532-533 ◽  
pp. 758-762
Author(s):  
Hua Wang ◽  
Jian Zhong Cao ◽  
Li Nao Tang ◽  
Zuo Feng Zhou

Wavelet transform is widely used and has good effect on image denoising. Wavelet transform has unique advantages in dealing with the smooth area of image but is not so perfect in high frequency areas such as the edges. However, curvelet transform can supply this gap when dealing with the high frequency areas because of the characteristic of anisotropy. In this paper, we proposed a new method which is based on the combination of wavelet transform and curvelet transform. Firstly, we detected the edges of the noisy-image using wavelet transform. Based on the edges we divided the image into two parts: the smoothness and the edges. Then, we used different transform methods to dispose different areas of the image, wavelet threshold denoising is used in smoothness while FDCT denoising is used in edges. Experimental results showed that we could get better visual effect and higher PSNR, which indicated that the proposed method is better than using wavelet transform or curvelet transform respectively.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 356-359 ◽  
Author(s):  
M. Sekine ◽  
M. Ogawa ◽  
T. Togawa ◽  
Y. Fukui ◽  
T. Tamura

Abstract:In this study we have attempted to classify the acceleration signal, while walking both at horizontal level, and upstairs and downstairs, using wavelet analysis. The acceleration signal close to the body’s center of gravity was measured while the subjects walked in a corridor and up and down a stairway. The data for four steps were analyzed and the Daubecies 3 wavelet transform was applied to the sequential data. The variables to be discriminated were the waveforms related to levels -4 and -5. The sum of the square values at each step was compared at levels -4 and -5. Downstairs walking could be discriminated from other types of walking, showing the largest value for level -5. Walking at horizontal level was compared with upstairs walking for level -4. It was possible to discriminate the continuous dynamic responses to walking by the wavelet transform.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


Sign in / Sign up

Export Citation Format

Share Document