Calculation of the Three-Phase Internal Fault Currents in Medium-Voltage Electrical Installations

2008 ◽  
Vol 23 (3) ◽  
pp. 1685-1686 ◽  
Author(s):  
Xiang Zhang ◽  
Jiaosuo Zhang ◽  
G. Pietsch
Author(s):  
Luo Xiaohui

This paper proposed a low cost wireless monitoring system based on ZigBee wireless transmission, and designed a new floating voltage sensor which is suitable for the monitoring of medium voltage and high voltage(MV/HV) public equipment. The system used TI-CC2530 as the controller, proposed a new moving average voltage sensing(MAVS) algorithm by reasonable assumptions, and adopted algorithms to perform the theoretical analysis for the single phase and three-phase voltage. At last, the author carried out a practical experiment on the wireless floating voltage sensor under the voltage up to 30kV, the experimental results showed that the proposed low cost wireless sensor can achieve a good voltage monitoring function, and the error is less than 3%.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 35151-35163
Author(s):  
Ahmed Salem ◽  
Huynh Van Khang ◽  
Kjell G. Robbersmyr

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1929 ◽  
Author(s):  
Fabio Gatta ◽  
Alberto Geri ◽  
Stefano Lauria ◽  
Marco Maccioni

A Cross-Country Fault (CCF) is the simultaneous occurrence of a couple of Line-to-Ground Faults (LGFs), affecting different phases of same feeder or of two distinct ones, at different fault locations. CCFs are not uncommon in medium voltage (MV) public distribution networks operated with ungrounded or high-impedance neutral: despite the relatively small value of LGF current that is typical of such networks, CCF currents can be comparable to those that are found in Phase-To-Phase Faults, if the affected feeder(s) consists of cables. This occurs because the faulted cables’ sheaths/screens provide a continuous, relatively low-impedance metallic return path to the fault currents. An accurate evaluation is in order, since the resulting current magnitudes can overheat sheaths/screens, endangering cable joints and other plastic sheaths. Such evaluation, however, requires the modeling of the whole MV network in the phase domain, simulating cable screens and their connections to the primary and secondary substation earth electrodes by suitable computer programs, such as ATP (which is the acronym for alternative transient program) or EMTP (the acronym for electromagnetic transient program), with substantial input data being involved. This paper presents a simplified yet accurate circuit model of the faulted MV network, taking into account the CCF currents’ return path (cable sheaths/screens, ground conductors, and earthing resistances of secondary substations). The proposed CCF model can be implemented in a general-purpose simulation program, and it yields accurate fault currents estimates: for a 20 kV network case study, the comparison with accurate ATP simulations evidences mismatches mostly smaller than 2%, and never exceeding 5%.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4186
Author(s):  
Saddam Shueai Alnamer ◽  
Saad Mekhilef ◽  
Hazlie Mokhlis ◽  
Nadia M. L. Tan

This research proposes a four-level T-type inverter that is suitable for low-power applications. The presented topology outranks other types of inverters in terms of a smaller number of semiconductor devices, absence of passive components such as clamping diodes and flying capacitors, low switching and conduction losses, and high efficiency. The proposed topology is free from voltage deviation and unbalanced voltage occurrences that are present in other multilevel converters having clamping diodes or flying capacitors. The proposed inverter can extend to N levels using unequal dc-link voltage sources for medium-voltage application. The inverter employs the simple fundamental frequency staircase modulation technique. Moreover, this paper presents a current commutation strategy to prevent the occurrences of short circuit and minimizing the number of required switching devices and switching transitions, resulting in improving the efficiency of the inverter. This paper also analyses the theoretical converter losses showing lower switching and conduction losses when compared to existing four-level inverters. The experimental validation of the proposed inverter shows its operating feasibility and a low output voltage THD.


Author(s):  
F. Ni ◽  
P.H. Nguyen ◽  
J.F.G. Cobben ◽  
H.E. Van den Brom ◽  
D. Zhao

Sign in / Sign up

Export Citation Format

Share Document