Joint Parallel Offloading and Load Balancing for Cooperative-MEC System with Delay Constraints

Author(s):  
Wenqian Zhang ◽  
Guanglin Zhang ◽  
Shiwen Mao
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sungwon Moon ◽  
Jaesung Park ◽  
Yujin Lim

Multiaccess edge computing (MEC) has emerged as a promising technology for time-sensitive and computation-intensive tasks. With the high mobility of users, especially in a vehicular environment, computational task migration between vehicular edge computing servers (VECSs) has become one of the most critical challenges in guaranteeing quality of service (QoS) requirements. If the vehicle’s tasks unequally migrate to specific VECSs, the performance can degrade in terms of latency and quality of service. Therefore, in this study, we define a computational task migration problem for balancing the loads of VECSs and minimizing migration costs. To solve this problem, we adopt a reinforcement learning algorithm in a cooperative VECS group environment that can collaborate with VECSs in the group. The objective of this study is to optimize load balancing and migration cost while satisfying the delay constraints of the computation task of vehicles. Simulations are performed to evaluate the performance of the proposed algorithm. The results show that compared to other algorithms, the proposed algorithm achieves approximately 20–40% better load balancing and approximately 13–28% higher task completion rate within the delay constraints.


Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


2003 ◽  
Vol 123 (10) ◽  
pp. 1847-1857
Author(s):  
Takahiro Tsukishima ◽  
Masahiro Sato ◽  
Hisashi Onari
Keyword(s):  

2014 ◽  
Vol 134 (8) ◽  
pp. 1104-1113
Author(s):  
Shinji Kitagami ◽  
Yosuke Kaneko ◽  
Hidetoshi Kambe ◽  
Shigeki Nankaku ◽  
Takuo Suganuma
Keyword(s):  

2013 ◽  
Vol 133 (4) ◽  
pp. 891-898
Author(s):  
Takeo Sakairi ◽  
Masashi Watanabe ◽  
Katsuyuki Kamei ◽  
Takashi Tamada ◽  
Yukio Goto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document