P3H-8 A Scalable Parallel Implementation of a k-Space Method for Large-Scale Ultrasound Imaging Simulations

Author(s):  
M. I. Daoud ◽  
Y.-T. Shen ◽  
J. C. Lacefield
2021 ◽  
Vol 13 (2) ◽  
pp. 176
Author(s):  
Peng Zheng ◽  
Zebin Wu ◽  
Jin Sun ◽  
Yi Zhang ◽  
Yaoqin Zhu ◽  
...  

As the volume of remotely sensed data grows significantly, content-based image retrieval (CBIR) becomes increasingly important, especially for cloud computing platforms that facilitate processing and storing big data in a parallel and distributed way. This paper proposes a novel parallel CBIR system for hyperspectral image (HSI) repository on cloud computing platforms under the guide of unmixed spectral information, i.e., endmembers and their associated fractional abundances, to retrieve hyperspectral scenes. However, existing unmixing methods would suffer extremely high computational burden when extracting meta-data from large-scale HSI data. To address this limitation, we implement a distributed and parallel unmixing method that operates on cloud computing platforms in parallel for accelerating the unmixing processing flow. In addition, we implement a global standard distributed HSI repository equipped with a large spectral library in a software-as-a-service mode, providing users with HSI storage, management, and retrieval services through web interfaces. Furthermore, the parallel implementation of unmixing processing is incorporated into the CBIR system to establish the parallel unmixing-based content retrieval system. The performance of our proposed parallel CBIR system was verified in terms of both unmixing efficiency and accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sai Kiranmayee Samudrala ◽  
Jaroslaw Zola ◽  
Srinivas Aluru ◽  
Baskar Ganapathysubramanian

Dimensionality reduction refers to a set of mathematical techniques used to reduce complexity of the original high-dimensional data, while preserving its selected properties. Improvements in simulation strategies and experimental data collection methods are resulting in a deluge of heterogeneous and high-dimensional data, which often makes dimensionality reduction the only viable way to gain qualitative and quantitative understanding of the data. However, existing dimensionality reduction software often does not scale to datasets arising in real-life applications, which may consist of thousands of points with millions of dimensions. In this paper, we propose a parallel framework for dimensionality reduction of large-scale data. We identify key components underlying the spectral dimensionality reduction techniques, and propose their efficient parallel implementation. We show that the resulting framework can be used to process datasets consisting of millions of points when executed on a 16,000-core cluster, which is beyond the reach of currently available methods. To further demonstrate applicability of our framework we perform dimensionality reduction of 75,000 images representing morphology evolution during manufacturing of organic solar cells in order to identify how processing parameters affect morphology evolution.


2014 ◽  
Author(s):  
Jason W Sahl ◽  
Greg Caporaso ◽  
David A Rasko ◽  
Paul S Keim

Background. As whole genome sequence data from bacterial isolates becomes cheaper to generate, computational methods are needed to correlate sequence data with biological observations. Here we present the large-scale BLAST score ratio (LS-BSR) pipeline, which rapidly compares the genetic content of hundreds to thousands of bacterial genomes, and returns a matrix that describes the relatedness of all coding sequences (CDSs) in all genomes surveyed. This matrix can be easily parsed in order to identify genetic relationships between bacterial genomes. Although pipelines have been published that group peptides by sequence similarity, no other software performs the large-scale, flexible, full-genome comparative analyses carried out by LS-BSR. Results. To demonstrate the utility of the method, the LS-BSR pipeline was tested on 96 Escherichia coli and Shigella genomes; the pipeline ran in 163 minutes using 16 processors, which is a greater than 7-fold speedup compared to using a single processor. The BSR values for each CDS, which indicate a relative level of relatedness, were then mapped to each genome on an independent core genome single nucleotide polymorphism (SNP) based phylogeny. Comparisons were then used to identify clade specific CDS markers and validate the LS-BSR pipeline based on molecular markers that delineate between classical E. coli pathogenic variant (pathovar) designations. Scalability tests demonstrated that the LS-BSR pipeline can process 1,000 E. coli genomes in ~60h using 16 processors. Conclusions. LS-BSR is an open-source, parallel implementation of the BSR algorithm, enabling rapid comparison of the genetic content of large numbers of genomes. The results of the pipeline can be used to identify specific markers between user-defined phylogenetic groups, and to identify the loss and/or acquisition of genetic information between bacterial isolates. Taxa-specific genetic markers can then be translated into clinical diagnostics, or can be used to identify broadly conserved putative therapeutic candidates.


Author(s):  
Song Xinhua ◽  
Zhou Haiyang ◽  
Zhao Tiejun ◽  
Li Xiaojie ◽  
Yan Honghao

In order to meet the requirements of “wide, thin, strong and light” for military stealth materials, it is of great practical value to study the absorbing characteristics of multi-layer MWCNTs/Fe3O4/NBR absorbing materials in space. First, we use the large-scale software COMSOL Multiphysics to simulate the absorbing characteristics of the composite thin plate in space. Then the four-port network matrix is used to calculate the absorbing characteristics of the composite plate in space. Finally, the Free-Space method is used to measure the reflection attenuation loss, and the results of the three methods are compared and analyzed. The results show that when the frequency is 10 GHz, the reflection loss of multi-layer MWCNTs/Fe3O4/NBR reaches the maximum value of −27.91, −27.01 and −22.56 dB by COMOSL numerical simulation, four-port network the matrix and Free-Space experimental measurement. The results of the three methods show that the reflection loss is less than −10 dB in the frequency band of 6–14 GHz.


Author(s):  
Jose M. Badía ◽  
Peter Benner ◽  
Rafael Mayo ◽  
Enrique S. Quintana-Ortí ◽  
Gregorio Quintana-Ortí ◽  
...  

2012 ◽  
pp. 497-511
Author(s):  
V.E. Malyshkin

The main ideas of the Assembly Technology (AT) in its application to parallel implementation of large scale realistic numerical models on a rectangular mesh are considered and demonstrated by the parallelization (fragmentation) of the Particle-In-Cell method (PIC) application to solution of the problem of energy exchange in plasma cloud. The implementation of the numerical models with the assembly technology is based on the construction of a fragmented parallel program. Assembling of a numerical simulation program under AT provides automatically different useful dynamic properties of the target program including dynamic load balance on the basis of the fragments migration from overloaded into underloaded processor elements of a multicomputer. Parallel program assembling approach also can be considered as combination and adaptation for parallel programming of the well known modular programming and domain decomposition techniques and supported by the system software for fragmented programs assembling.


Sign in / Sign up

Export Citation Format

Share Document