Modeling and Electrical Characterization of a Cantilever Beam for Mechanical Energy Harvesting

Author(s):  
Thien Hoang ◽  
Maxime Bavencoffe ◽  
Guillaume Ferin ◽  
Franck Levassort ◽  
Claire Bantignies ◽  
...  
Energy ◽  
2019 ◽  
Vol 176 ◽  
pp. 561-569 ◽  
Author(s):  
Mojtaba Ghodsi ◽  
Hamidreza Ziaiefar ◽  
Morteza Mohammadzaheri ◽  
Amur Al-Yahmedi

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Mostafa Safdari Shadloo ◽  
Arash Karimipour

In this paper, the maximum obtainable energy from a galloping cantilever beam is found. The system consists of a bluff body in front of wind which was mounted on a cantilever beam and supported by piezoelectric sheets. Wind energy caused the transverse vibration of the beam and the mechanical energy of vibration is transferred to electrical charge by use of piezoelectric transducer. The nonlinear motion of the Euler–Bernoulli beam and conservation of electrical energy is modeled by lumped ordinary differential equations. The wind forces on the bluff body are modeled by quasisteady aeroelasticity approximation where the fluid and solid corresponding dynamics are disconnected in time scales. The linearized motion of beam is limited by its yield stress which causes to find a limit on energy harvesting of the system. The theory founded is used to check the validity of previous results of researchers for the effect of wind speed, tip cross-section geometry, and electrical load resistance on onset speed to galloping, tip displacement, and harvested power. Finally, maximum obtainable average power in a standard RC circuit as a function of deflection limit and synchronized charge extraction is obtained.


Author(s):  
Hong Goo Yeo ◽  
Charles Yeager ◽  
Xiaokun Ma ◽  
J. Israel Ramirez ◽  
Kaige G. Sun ◽  
...  

The development of self-powered wireless microelectromechanical (MEMS) sensors hinges on the ability to harvest adequate energy from the environment. When solar energy is not available, mechanical energy from ambient vibrations, which are typically low frequency, is of particular interest. Here, higher power levels were approached by better coupling mechanical energy into the harvester, using improved piezoelectric layers, and efficiently extracting energy through the use of low voltage rectifiers. Most of the available research on piezoelectric energy harvesters reports Pb(Zr,Ti)O3 (PZT) or AlN thin films on Si substrates, which are well-utilized for microfabrication. However, to be highly reliable under large vibrations and impacts, flexible passive layers such as metal foil with high fracture strength would be more desirable than brittle Si substrates for MEMS energy harvesting. In addition, metallic substrates readily enable tuning the resonant frequency down by adding proof masses. In order to extract the maximum power from such a device, a high level of (001) film orientation enables an increase in the energy harvesting figures of merit due to the coupling of strong piezoelectricity and low dielectric permittivity. Strongly {001} oriented PZT could be deposited by chemical solution deposition or RF magnetron sputtering and ex situ annealing on (100) oriented LaNiO3 / HfO2 / Ni foils. The comparatively high thermal expansion coefficient of the Ni facilitates development of a strong out-of-plane polarization. 31 mode cantilever beam energy harvesters were fabricated using strongly {001} textured 1∼3 μm thick PZT films on Ni foils with dielectric permittivity of ∼ 350 and low loss tangent (<2%) at 100 Hz. The resonance frequency of the cantilevers (50∼75 Hz) was tuned by changing the beam size and proof mass. A cantilever beam with 3 μm thickness of PZT film and 0.4 g proof mass exhibited a maximum output power of 64.5 μW under 1 g acceleration vibration with a 100 kΩ load resistance after poling at 50 V (EC ∼ 16 V) for 10 min at room temperature. Under 0.3g acceleration, the average power of the device is 9 μW at a resonance frequency of ∼70 Hz. Excellent agreement between the measured and modeled data was obtained using a linear analytical model for an energy harvesting system, using an Euler-Bernoulli beam model. It was also demonstrated that up to an order of magnitude more power could be harvested by more efficiently utilizing the available strain using a parabolic mode shape for the vibrating structure. Additionally, voltage rectifying electronics in the form of ZnO thin film transistors are deposited directly on the cantilever. This relieves the role of voltage rectification from the interfacing circuitry and provides a technique improved harvesting relative to solid state diode rectification because the turn-on bias can be reduced to zero.


Author(s):  
Marcos Norio Watanabe ◽  
William Chiappim Junior ◽  
Veronica Christiano ◽  
Fabio Izumi ◽  
Sebastiao Gomes dos Santos Filho

2015 ◽  
Vol 645-646 ◽  
pp. 1189-1194
Author(s):  
Hai Peng Liu ◽  
Shi Qiao Gao ◽  
Lei Jin

Harvesting ambient vibration energy through piezoelectric (PE) means is a popular energy harvesting technique. The merit of applying PE means to supply energy for microelectronic devices is that they can reduce the battery weight and possibly make the device self-powered by harvesting mechanical energy. This investigation will examine the energy generating performance of miniature PE cantilever beam through theoretical modeling, simulation and experiment testing. Through the theoretical analysis of the piezoelectric energy harvesting structure, the expression of open circuit voltage output is obtained. Using ANSYS software, the working performance of piezoelectric cantilever beam is analyzed. On the basis of theoretical analysis and simulation optimization, a set of experimental system is established to test the energy harvesting performance of the piezoelectric cantilever beam. The testing result shows that the harvested energy by the piezoelectric cantilever beam could supply electrical power to some micro electrical devices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mickaël Pruvost ◽  
Wilbert J. Smit ◽  
Cécile Monteux ◽  
Pablo Del Corro ◽  
Isabelle Dufour ◽  
...  

AbstractFlexible dielectrics that harvest mechanical energy via electrostatic effects are excellent candidates as power sources for wearable electronics or autonomous sensors. The integration of a soft dielectric composite (polydimethylsiloxane PDMS-carbon black CB) into two mechanical energy harvesters is here presented. Both are based on a similar cantilever beam but work on different harvesting principles: variable capacitor and triboelectricity. We show that without an external bias the triboelectric beam harvests a net density power of 0.3 $$\upmu \mathrm{W}/{\mathrm{cm}}^{2}$$ μ W / cm 2 under a sinusoidal acceleration of 3.9g at 40 Hz. In a variable capacitor configuration, a bias of 0.15 $$\mathrm{V}/\upmu \mathrm{m}$$ V / μ m is required to get the same energy harvesting performance under the same working conditions. As variable capacitors’ harvesting performance are quadratically dependent on the applied bias, increasing the bias allows the system to harvest energy much more efficiently than the triboelectric one. The present results make CB/PDMS composites promising for autonomous portable multifunctional systems and intelligent sensors.


Author(s):  
Zia Saadatnia ◽  
Ebrahim Esmailzadeh ◽  
Hani E. Naguib

In this study the dynamic and electrical performance of a novel hybrid Electromagnetic-Triboelectric energy harvester is studied. The mechanism incorporates a linear tubular electromagnetic (EMG) transducer as well as a free-standing grating triboelectric (TENG) transducer. The heaving of the slider inside the stator triggers both EMG and TENG which results in electricity generation. The dynamic model of the system is firstly developed and the system response under external excitation is carried out. Then, the electrical output characteristics of each harvesting unit are developed based on the dynamic response. Then, the effects of various parameters such as frequency of excitation and external electrical load on the output performance of the harvester including voltage, current, and power density of the EMG and TENG units are investigated. This study provides a guideline toward the design and analysis of novel mechanical energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document