Workspace and Singularity Analysis of Five Bar Planar Parallel Manipulator

Author(s):  
Ram Bilas Prasad ◽  
Mohd Arif
1970 ◽  
Vol 41 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Soheil Zarkandi

Finding Singular configurations (singularities) is one of the mandatory steps during the design and control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined that causes serious problems both to static behavior and to motion control of the mechanism. This paper addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be used to find all types of singularities occurring in this type of manipulators.Key Words: Planar parallel manipulators; Redundant manipulators; Singularity analysis; Jacobian matrices.DOI: 10.3329/jme.v41i1.5356Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 1-6


Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Jinsong Wang ◽  
Jun Wu ◽  
Tiemin Li ◽  
Xinjun Liu

SUMMARYThis paper deals with the position workspace, orientation workspace, and singularity of a 3-degree-of-freedom (DOF) planar parallel manipulator with actuation redundancy, which is created by introducing a redundant link with active actuator to a 3-DOF nonredundant parallel manipulator. Based on the kinematic analysis, the position workspace and orientation workspace of the redundantly actuated parallel manipulator and its corresponding nonredundant parallel manipulator are analyzed, respectively. In the singularity analysis phase, the relationship between the generalized input velocity and the generalized output velocity is researched on the basis of the theory of singular value decomposition. Then a method to investigate the singularity of parallel manipulators is presented, which is used to determine the singularity of the redundantly actuated parallel manipulator. In contrast to the corresponding nonredundant parallel manipulator, the redundant one has larger orientation workspace and less singular configurations. The redundantly actuated parallel manipulator is incorporated into a 4-DOF hybrid machine tool which also includes a feed worktable to demonstrate its applicability.


2020 ◽  
Author(s):  
P. Sri Vijay Kalki ◽  
C. H. Sai Manohar ◽  
G. Jagadeesh ◽  
Anjan Kumar Dash

Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong

To obtain excellent comprehensive performances of the planar parallel manipulator for the high-speed application, an integrated optimal design method, which integrated dimensional synthesis, motors/reducers selection, and control parameters tuning, is proposed, and the 3RRR parallel manipulator was taken as the example. The kinematic and dynamic performances of condition number, velocity index, acceleration capability, and low-order frequency are taken into accounts for the dimensional synthesis. Then, to match motors/reducers parameters and keep an economical cost, the constraint equations and the parameters library are built, and the cost is chosen as one of the optimization objectives. Also, to get high tracking accuracy, the dynamic forward plus proportional–derivative control scheme is introduced, and the tracking error is chosen as one of the optimization objectives. Hence, the optimization model including dimensional synthesis, motors/reducers selection and controller parameters tuning is established, which is solved by the genetic algorithm II (NSGA-II). The result shows that comprehensive performances can be effectively promoted through the proposed integrated optimal design, and the prototype was constructed according to the Pareto-optimal front.


Sign in / Sign up

Export Citation Format

Share Document