Inverse kinematic and singularity analysis of a 3-PRR planar parallel manipulator

2020 ◽  
Author(s):  
P. Sri Vijay Kalki ◽  
C. H. Sai Manohar ◽  
G. Jagadeesh ◽  
Anjan Kumar Dash
1970 ◽  
Vol 41 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Soheil Zarkandi

Finding Singular configurations (singularities) is one of the mandatory steps during the design and control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined that causes serious problems both to static behavior and to motion control of the mechanism. This paper addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be used to find all types of singularities occurring in this type of manipulators.Key Words: Planar parallel manipulators; Redundant manipulators; Singularity analysis; Jacobian matrices.DOI: 10.3329/jme.v41i1.5356Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 1-6


Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Jinsong Wang ◽  
Jun Wu ◽  
Tiemin Li ◽  
Xinjun Liu

SUMMARYThis paper deals with the position workspace, orientation workspace, and singularity of a 3-degree-of-freedom (DOF) planar parallel manipulator with actuation redundancy, which is created by introducing a redundant link with active actuator to a 3-DOF nonredundant parallel manipulator. Based on the kinematic analysis, the position workspace and orientation workspace of the redundantly actuated parallel manipulator and its corresponding nonredundant parallel manipulator are analyzed, respectively. In the singularity analysis phase, the relationship between the generalized input velocity and the generalized output velocity is researched on the basis of the theory of singular value decomposition. Then a method to investigate the singularity of parallel manipulators is presented, which is used to determine the singularity of the redundantly actuated parallel manipulator. In contrast to the corresponding nonredundant parallel manipulator, the redundant one has larger orientation workspace and less singular configurations. The redundantly actuated parallel manipulator is incorporated into a 4-DOF hybrid machine tool which also includes a feed worktable to demonstrate its applicability.


Author(s):  
Genliang Chen ◽  
Weidong Yu ◽  
Hao Wang ◽  
Jiepeng Wang

This paper presents the design of a novel spherical parallel manipulator. The spherical parallel manipulator consists of three identical limbs and each of them is formed by a planar parallelogram linkage, a universal joint, and a revolute one, successively. Its mobility is analyzed using the reciprocal screws. After that, the kinematics is analyzed in detail, including inverse kinematic modeling, which is validated by a numerical example, inverse Jacobian analysis, singularity analysis, and manipulability analysis, which shows a relatively good performance of force transmission. Then based on the analysis, one prototype is fabricated to validate the effectiveness and feasibility of the design. In the end, some conclusions are drawn and future works are discussed.


2011 ◽  
Vol 101-102 ◽  
pp. 685-688 ◽  
Author(s):  
Meng Guan ◽  
Yi Min Song ◽  
Tao Sun ◽  
Gang Dong

This paper presents a novel 4-DOF (Degree of Freedom) parallel manipulator called 2-PSS&(2-PRR)R manipulator. Firstly, the architecture of this manipulator is described and the mobility is analyzed via screw theory. Secondly, the inverse kinematic analysis including position analysis and velocity analysis is performed. Finally, the Jacobian matrix is obtained through velocity analysis, and then three kinds of singularity configurations are observed in virtue of the Jacobian matrix. This paper lays the foundation for further research of this manipulator.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Erik Macho ◽  
Oscar Altuzarra ◽  
Charles Pinto ◽  
Alfonso Hernandez

SUMMARYThe aim of this paper is to show how it is possible to obtain for the 5R planar parallel manipulator the complete workspace associated with each solution of the direct kinematic problem or assembly mode. The workspaces associated with the different inverse kinematic problem solutions or working modes are joined and the robot moves from one to another without losing the control. An exhaustive analysis of the complete workspace and singular positions of the 5R planar parallel manipulator with two active joints is presented. Furthermore, application of these principles to path planning will be explained.


Sign in / Sign up

Export Citation Format

Share Document