The simplifying partition algorithm of reliability evaluation to complicated medium voltage power distribution grid

Author(s):  
Zhou Ling ◽  
Ding Xiaoqun ◽  
Yan Huimin ◽  
Liu Hongliang
Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 644 ◽  
Author(s):  
Alex Valenzuela ◽  
Esteban Inga ◽  
Silvio Simani

This study describes a practical methodology for a resilient planning and routing of power distribution networks considering real scenarios based on georeferenced data. Customers’ demand and their location are the basis for distribution transformer allocation considering the minimal construction costs and reduction of utility’s budget. MST (Minimum Spanning Tree) techniques are implemented to determine the optimal location of distribution transformers and Medium voltage network routing. Additionally, the allocation of tie points is determined to minimise the total load shedding when unusual and extreme events are faced by the distribution grid, improving reliability and resilience reducing downtime during those events. The proposed methodology provides a coverage of 100%, supplying electricity to the totality of customers within statutory limits during normal and unusual conditions.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 593
Author(s):  
Moiz Muhammad ◽  
Holger Behrends ◽  
Stefan Geißendörfer ◽  
Karsten von Maydell ◽  
Carsten Agert

With increasing changes in the contemporary energy system, it becomes essential to test the autonomous control strategies for distributed energy resources in a controlled environment to investigate power grid stability. Power hardware-in-the-loop (PHIL) concept is an efficient approach for such evaluations in which a virtually simulated power grid is interfaced to a real hardware device. This strongly coupled software-hardware system introduces obstacles that need attention for smooth operation of the laboratory setup to validate robust control algorithms for decentralized grids. This paper presents a novel methodology and its implementation to develop a test-bench for a real-time PHIL simulation of a typical power distribution grid to study the dynamic behavior of the real power components in connection with the simulated grid. The application of hybrid simulation in a single software environment is realized to model the power grid which obviates the need to simulate the complete grid with a lower discretized sample-time. As an outcome, an environment is established interconnecting the virtual model to the real-world devices. The inaccuracies linked to the power components are examined at length and consequently a suitable compensation strategy is devised to improve the performance of the hardware under test (HUT). Finally, the compensation strategy is also validated through a simulation scenario.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 830
Author(s):  
Filipe F. C. Silva ◽  
Pedro M. S. Carvalho ◽  
Luís A. F. M. Ferreira

The dissemination of low-carbon technologies, such as urban photovoltaic distributed generation, imposes new challenges to the operation of distribution grids. Distributed generation may introduce significant net-load asymmetries between feeders in the course of the day, resulting in higher losses. The dynamic reconfiguration of the grid could mitigate daily losses and be used to minimize or defer the need for network reinforcement. Yet, dynamic reconfiguration has to be carried out in near real-time in order to make use of the most updated load and generation forecast, this way maximizing operational benefits. Given the need to quickly find and update reconfiguration decisions, the computational complexity of the underlying optimal scheduling problem is studied in this paper. The problem is formulated and the impact of sub-optimal solutions is illustrated using a real medium-voltage distribution grid operated under a heavy generation scenario. The complexity of the scheduling problem is discussed to conclude that its optimal solution is infeasible in practical terms if relying upon classical computing. Quantum computing is finally proposed as a way to handle this kind of problem in the future.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Friederike Wenderoth ◽  
Elisabeth Drayer ◽  
Robert Schmoll ◽  
Michael Niedermeier ◽  
Martin Braun

Abstract Historically, the power distribution grid was a passive system with limited control capabilities. Due to its increasing digitalization, this paradigm has shifted: the passive architecture of the power system itself, which includes cables, lines, and transformers, is extended by a communication infrastructure to become an active distribution grid. This transformation to an active system results from control capabilities that combine the communication and the physical components of the grid. It aims at optimizing, securing, enhancing, or facilitating the power system operation. The combination of power system, communication, and control capabilities is also referred to as a “smart grid”. A multitude of different architectures exist to realize such integrated systems. They are often labeled with descriptive terms such as “distributed,” “decentralized,” “local,” or “central." However, the actual meaning of these terms varies considerably within the research community.This paper illustrates the conflicting uses of prominent classification terms for the description of smart grid architectures. One source of this inconsistency is that the development of such interconnected systems is not only in the hands of classic power engineering but requires input from neighboring research disciplines such as control theory and automation, information and telecommunication technology, and electronics. This impedes a clear classification of smart grid solutions. Furthermore, this paper proposes a set of well-defined operation architectures specialized for use in power systems. Based on these architectures, this paper defines clear classifiers for the assessment of smart grid solutions. This allows the structural classification and comparison between different smart grid solutions and promotes a mutual understanding between the research disciplines. This paper presents revised parts of Chapters 4.2 and 5.2 of the dissertation of Drayer (Resilient Operation of Distribution Grids with Distributed-Hierarchical Architecture. Energy Management and Power System Operation, vol. 6, 2018).


2022 ◽  
Vol 156 ◽  
pp. 112010
Author(s):  
Seongmun Oh ◽  
Fauzan Hanif Jufri ◽  
Min-Hee Choi ◽  
Jaesung Jung

Sign in / Sign up

Export Citation Format

Share Document