Control of Lower Limb Rehabilitation Exoskeleton Robot Based on CPG Neural Network*

Author(s):  
Yingxu WANG ◽  
Aibin ZHU ◽  
Hongling WU ◽  
Pengcheng ZHU ◽  
Xiaodong ZHANG ◽  
...  
2021 ◽  
Vol 33 (1) ◽  
pp. 88-96
Author(s):  
Aihui Wang ◽  
Ningning Hu ◽  
Jun Yu ◽  
Junlan Lu ◽  
Yifei Ge ◽  
...  

For patients with dyskinesias caused by central nervous system diseases such as stroke, in the early stage of rehabilitation training, lower limb rehabilitation robots are used to provide passive rehabilitation training. This paper proposed a human-like robust adaptive PD control strategy of the exoskeleton robot based on healthy human gait data. When the error disturbance is bounded, a human-like robust adaptive PD control strategy is designed, which not only enables the rehabilitation exoskeleton robot to quickly track the human gait trajectory obtained through the 3D NOKOV motion capture system, but also can well identify the structural parameters of the system and avoid excessively initial output torque for the robot. MATLAB simulation verifies that the proposed method has a better performance to realize tracking the experimental trajectory of human movement and anti-interference ability under the condition of ensuring global stability for a lower limb rehabilitation exoskeleton robot.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110118
Author(s):  
Jinman Zhou ◽  
Shuo Yang ◽  
Qiang Xue

Lower limb rehabilitation exoskeleton robots (LLRERs) play a positive role in lower limb rehabilitation and assistance for patients with lower limb disorders, and they are helpful to improve patients’ physical status. More and more experiments pay more attention to the kinematic and dynamic data characteristics of different patient groups. However, it is not clear whether these devices have broad adaptability and their clinical significance, so it is necessary to summarize and analyze these research results. This paper summarizes the LLRERs prototype and product in recent years, also compares the advantages and disadvantages of the theory and technology used in these research, and compares the functional characteristics of the devices, finally summarizes the aspects of the LLRERs to be improved. These devices apply advanced theories, techniques or structures, as well as human kinematics and dynamics data. However, due to the complexity of human body characteristics and movement rules, the theory or technology applied in the study design of LLRERs remains to be further studied, which can be improved in many aspects, such as improve the human-computer cooperation of equipment or carry out clinical trials. This paper can provide reference for researchers and designers in the future study, as well as understanding and selecting LLRERs for all kinds of therapist and patients.


Sign in / Sign up

Export Citation Format

Share Document