An IEEE 802.11p/WAVE implementation with synchronous channel switching for seamless dual-channel access (poster)

Author(s):  
Carlos Ameixieira ◽  
Jose Matos ◽  
Ricardo Moreira ◽  
Andre Cardote ◽  
Arnaldo Oliveira ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Salvador Gonzalez ◽  
Victor Ramos

The IEEE 802.11p standard operates with the WAVE (Wireless Access in Vehicular Environments) system in vehicular ad hoc networks (VANETs). The broadcast process is used to send messages for safety and non-safety applications. A previous work on broadcast packets over the control channel proposes an analytical model to study the loss process. Even if such work does not consider all of the phenomena affecting the operation of vehicular networks, we can obtain a very good approximation of the performance that VANETs may exhibit. Regardless of its importance, this subject has been barely studied. Moreover, there is in the literature only a couple of contributions on this subject, being both analytical models. Therefore, we present in this paper an analysis of the loss process of broadcast packets on the control channel of VANETs over different scenarios. First, we consider a typical two-way scenario and then we analyze a scenario with intersections, both for different vehicle densities. We conduct a campaign of extensive simulations with the NS-3 simulator to study the average loss rate of broadcast packets, and then we compare our results with an analytical model proposed by Campolo et al. We prove the relationship among the contention window, the packet size, and the number of vehicles with the loss rate, including losses caused by noise, collisions, hidden terminal, and channel switching. Thus, we analyze the loss process validating the results obtained by Campolo et al. We find that there are additional factors affecting the loss rate, which cannot be captured with the analytical model. One key finding in this work is that the loss rate due to channel switching differs between both approaches. Also, we find bounds on the use of the control channel, with the loss rate and the traffic load in the network as parameters.


2019 ◽  
Vol 10 (1) ◽  
pp. 311 ◽  
Author(s):  
Woojin Ahn ◽  
Ronny Yongho Kim

In this paper, a novel channel access scheme, Distributed Triggered Access (DTA), is proposed for distributed V2V Basic Safety Message (BSM) dissemination in future platooning environment. To meet the stringent delay requirements of platooning communications, the proposed scheme is designed to use Wireless Local Area Network (WLAN) multi-user channel access in a distributed manner. The proposed scheme leverages advanced Medium Access Control (MAC) layer features, such as Triggered Uplink Access and Multi-user Request-To-Send (RTS), introduced in the 6th generation mainstream WLAN standard, IEEE 802.11ax, based upon a conceptual Physical (PHY) layer frame structure for IEEE 802.11bd, the successor of IEEE 802.11p. The proposed scheme is analyzed by mathematical model and simulations from transmission delay and successful transmission rate perspective. The mathematical model includes a Markov chain analysis that models the Enhanced Distributed Channel Access (EDCA) backoff procedure of DTA considering the effect of resumed backoff procedure with empty buffer caused by triggered access. Also, a Markov arrival/General service distribution/1 service channel (M/G/1) queuing model is provided to analyze the transmission delay of a BSM under unsaturated traffic condition. The extensive simulation results corroborate that DTA effectively improves the transmission success rate and reduces the average BSM collecting delay in a highly congested environment.


Author(s):  
Martijn van Eenennaam ◽  
Anne van de Venis ◽  
Georgios Karagiannis

2014 ◽  
Vol 10 (8) ◽  
pp. 579791 ◽  
Author(s):  
Weidong Yang ◽  
Wei Liu ◽  
Pan Li ◽  
Limin Sun

Sign in / Sign up

Export Citation Format

Share Document