Energy Efficient Full-Duplex Communication Systems with Reconfigurable Intelligent Surface

Author(s):  
Jingwen Zhao ◽  
Ming Chen ◽  
Mingzhe Chen ◽  
Zhaohui Yang ◽  
Yinlu Wang ◽  
...  
2020 ◽  
Vol E103.B (1) ◽  
pp. 71-78
Author(s):  
Tung Thanh VU ◽  
Duy Trong NGO ◽  
Minh N. DAO ◽  
Quang-Thang DUONG ◽  
Minoru OKADA ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 537
Author(s):  
Mohammad Baniata ◽  
Haftu Tasew Reda ◽  
Naveen Chilamkurti ◽  
Alsharif Abuadbba

One of the major concerns in wireless sensor networks (WSNs) is most of the sensor nodes are powered through limited lifetime of energy-constrained batteries, which majorly affects the performance, quality, and lifetime of the network. Therefore, diverse clustering methods are proposed to improve energy efficiency of the WSNs. In the meantime, fifth-generation (5G) communications require that several Internet of Things (IoT) applications need to adopt the use of multiple-input multiple-output (MIMO) antenna systems to provide an improved capacity over multi-path channel environment. In this paper, we study a clustering technique for MIMO-based IoT communication systems to achieve energy efficiency. In particular, a novel MIMO-based energy-efficient unequal hybrid clustering (MIMO-HC) protocol is proposed for applications on the IoT in the 5G environment and beyond. Experimental analysis is conducted to assess the effectiveness of the suggested MIMO-HC protocol and compared with existing state-of-the-art research. The proposed MIMO-HC scheme achieves less energy consumption and better network lifetime compared to existing techniques. Specifically, the proposed MIMO-HC improves the network lifetime by approximately 3× as long as the first node and the final node dies as compared with the existing protocol. Moreover, the energy that cluster heads consume on the proposed MIMO-HC is 40% less than that expended in the existing protocol.


Author(s):  
Fernando Gregorio ◽  
Gustavo González ◽  
Christian Schmidt ◽  
Juan Cousseau

2008 ◽  
Vol 5 (1) ◽  
pp. 95-100
Author(s):  
Baghdad Science Journal

In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).


Sign in / Sign up

Export Citation Format

Share Document