Static test compaction for delay fault test sets consisting of broadside and skewed-load tests

Author(s):  
Irith Pomeranz
2011 ◽  
Vol 374-377 ◽  
pp. 2411-2420
Author(s):  
Sui Tan ◽  
Zhi Wu Yu ◽  
Hua Shuai Zhang

The reliability evaluation for the bridge in service can provide a scientific basis for decision-making in bridge repair and reinforcement. A comprehensive method for reliability evaluation was introduced in this paper based on a long span continuous bridge with variable section evaluation. Appearance survey of the bridge, concrete strength and carbonization test, static test and dynamic test would be done as well as the finite element simulation model to determine the properties of the bridge for reliability evaluation. The relationship of the natural frequency stiffness evaluation method and the effective coefficient method would be established in this paper based on the test results. Based on the static and dynamic test, we classify the bridge as class 3 while the bending stiffness is good, the dynamic rigidity is a little weak, and the damping coefficient a little larger.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3014 ◽  
Author(s):  
Artur Kurnyta ◽  
Wojciech Zielinski ◽  
Piotr Reymer ◽  
Krzysztof Dragan ◽  
Michal Dziendzikowski

This paper presents the preparation and execution of on-ground static and engine load tests for the composite unmanned aerial vehicle (UAV). The test was conducted for pre-flight structural strength verification of the remotely piloted aerial target named HORNET, after introducing some structural modifications. The ground tests were performed before the flight test campaign, to ensure the strength and operational safety of the modified structure. The panel method and Computer Aided Design (CAD) modelling were adopted for numerical evaluation of aerodynamic and inertial forces’ distribution to simulate loading scenarios for launch, flight and parachute deploying conditions during the static test. Then, the multi-stage airframe static test was prepared and executed with the use of a designed modular test rig, artificial masses, as well as a wireless strain measurement system to perform structure verification. The UAV was investigated with 150% of the typical load spectrum. Furthermore, an engine test was also conducted on a ground test stand to verify strain and vibration levels in correspondence to engine speed, as well as the reliability of data link and the lack of its interferences with wireless control and telemetry. In the article, data achieved from the numerical and experimental parts of the test are discussed, as well as post-test remarks are given.


Sign in / Sign up

Export Citation Format

Share Document