Bias-dependent photoluminescence intensity for the estimation of surface recombination velocity in compound-semiconductor solar cell

Author(s):  
A. Yamamoto ◽  
M. Ohkubo ◽  
Y. Tashiro ◽  
A. Hashimoto
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 592
Author(s):  
Myeong Sang Jeong ◽  
Yonghwan Lee ◽  
Ka-Hyun Kim ◽  
Sungjin Choi ◽  
Min Gu Kang ◽  
...  

In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.


Author(s):  
М.В. Лебедев ◽  
Т.В. Львова ◽  
А.Н. Смирнов ◽  
В.Ю. Давыдов

Photoluminescence and Raman spectroscopy are used to study the electronic properties of n-InP(100) surfaces passivated with different sulfide solutions. Such a passivation results in the increase in photoluminescence intensity of the semiconductor evidencing for the reduction in the surface recombination velocity. The increase in the photoluminescence intensity is accompanied by the narrowing of the surface depletion layer, as well as by the increase of the electron density in the probed volume of InP. The efficiency of electronic passivation of the n-InP(100) surface depends on the composition of the sulfide solution.


2018 ◽  
Vol 09 (02) ◽  
pp. 189-201
Author(s):  
Ousmane Diasse ◽  
Amadou Diao ◽  
Mamadou Wade ◽  
Marcel Sitor Diouf ◽  
Ibrahima Diatta ◽  
...  

2021 ◽  
Author(s):  
Z. Pezeshki ◽  
A. Zekry

The book presents a comprehensive survey about advanced solar cell technologies. Focus is placed on semiconductor materials, solar cell efficiency, improvements in surface recombination velocity, charge density, high ultraviolet (UV) sensitivity, modeling of solar cells etc. The book references 281 original resources with their direct web links for in-depth reading.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4986
Author(s):  
Gokul Sidarth Thirunavukkarasu ◽  
Mehdi Seyedmahmoudian ◽  
Jaideep Chandran ◽  
Alex Stojcevski ◽  
Maruthamuthu Subramanian ◽  
...  

Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 Ω·cm; bulk lifetime of 2 ms; emitter (n+) doping concentration of 1×1020 cm−3 and shallow back surface field doping concentration of 1×1018 cm−3; surface recombination velocity maintained in the range of 102 and 103 cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.


2015 ◽  
Vol 15 (7) ◽  
pp. 5123-5128 ◽  
Author(s):  
Nagarajan Balaji ◽  
Cheolmin Park ◽  
Jayapal Raja ◽  
Minkyu Ju ◽  
Muthukumarasamy Rangaraju Venkatesan ◽  
...  

2015 ◽  
Vol 1117 ◽  
pp. 114-117
Author(s):  
J. Kaupužs ◽  
Arturs Medvid'

The photo current-voltage characteristic of a solar cell with graded band gap is calculated numerically based on the drift-diffusion equation and Poisson equation. The calculated efficiency of the CdTe solar cell with p-n junction located in 1μm depth increases remarkably when the band gap of the front n-type layer is graded. The effect is strong for high surface recombination velocity and is remarkable even at: the calculated efficiency increases from 19.6% to 24.3%.


Sign in / Sign up

Export Citation Format

Share Document