Stochastic Delay Performance Guarantee in A Terminal-Edge Collaboration System

Author(s):  
Wenying Zhou ◽  
Zhihao Yang ◽  
Zhidu Li ◽  
Dapeng Wu
Author(s):  
Jaya Pratha Sebastiyar ◽  
Martin Sahayaraj Joseph

Distributed joint congestion control and routing optimization has received a significant amount of attention recently. To date, however, most of the existing schemes follow a key idea called the back-pressure algorithm. Despite having many salient features, the first-order sub gradient nature of the back-pressure based schemes results in slow convergence and poor delay performance. To overcome these limitations, the present study was made as first attempt at developing a second-order joint congestion control and routing optimization framework that offers utility-optimality, queue-stability, fast convergence, and low delay.  Contributions in this project are three-fold. The present study propose a new second-order joint congestion control and routing framework based on a primal-dual interior-point approach and established utility-optimality and queue-stability of the proposed second-order method. The results of present study showed that how to implement the proposed second-order method in a distributed fashion.


2010 ◽  
Vol 30 (1) ◽  
pp. 134-136
Author(s):  
Ying LIN ◽  
Li XU
Keyword(s):  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aryan Afzalian

AbstractUsing accurate dissipative DFT-NEGF atomistic-simulation techniques within the Wannier-Function formalism, we give a fresh look at the possibility of sub-10-nm scaling for high-performance complementary metal oxide semiconductor (CMOS) applications. We show that a combination of good electrostatic control together with high mobility is paramount to meet the stringent roadmap targets. Such requirements typically play against each other at sub-10-nm gate length for MOS transistors made of conventional semiconductor materials like Si, Ge, or III–V and dimensional scaling is expected to end ~12 nm gate-length (pitch of 40 nm). We demonstrate that using alternative 2D channel materials, such as the less-explored HfS2 or ZrS2, high-drive current down to ~6 nm is, however, achievable. We also propose a dynamically doped field-effect transistor concept, that scales better than its MOSFET counterpart. Used in combination with a high-mobility material such as HfS2, it allows for keeping the stringent high-performance CMOS on current and competitive energy-delay performance, when scaling down to virtually 0 nm gate length using a single-gate architecture and an ultra-compact design (pitch of 22 nm). The dynamically doped field-effect transistor further addresses the grand-challenge of doping in ultra-scaled devices and 2D materials in particular.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiangjun Dai ◽  
Suli Wang ◽  
Weizhi Xiong ◽  
Ni Li

Abstract We propose and study a stochastic delay single-species population system in polluted environment with psychological effect and pulse toxicant input. We establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and strong persistence of the single-species population and obtain the threshold value between extinction and weak persistence. Finally, we confirm the efficiency of the main results by numerical simulations.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Shi ◽  
Yujia He ◽  
Masamitsu Onishi ◽  
Kiyoshi Kobayashi

Sustainable operation of public-private partnership (PPP) infrastructure projects that are characterized by considerable external benefits is of vital importance. However, a liquidity shock might trigger an inefficient liquidation of a project by the special purpose vehicle (SPV) and the bank, whose objectives are to maximize the profits generated by the project. This study argues that performance guarantee and subsidy policies implemented by the government play a role in encouraging socially efficient decision-making by the SPV and the bank to ensure the continuation of socially valuable projects. The results show that both government subsidy and performance guarantee policies are effective in avoiding the inefficient liquidation of PPP infrastructure projects when the external benefits are large and certain. However, a performance guarantee policy might lead to inefficient continuation when the external benefits of a project are uncertain. Finally, we discuss the possibility that an integrated policy combining performance guarantees and government subsidies improves the efficiency of a PPP infrastructure project.


Sign in / Sign up

Export Citation Format

Share Document