Exact analysis of delay performance of Go‐Back‐N ARQ scheme over multiple parallel channels

2001 ◽  
Vol 84 (9) ◽  
pp. 27-41 ◽  
Author(s):  
Shumji Fujii ◽  
Yukuo Hayashida ◽  
Masaharu Komatsu
Author(s):  
Jaya Pratha Sebastiyar ◽  
Martin Sahayaraj Joseph

Distributed joint congestion control and routing optimization has received a significant amount of attention recently. To date, however, most of the existing schemes follow a key idea called the back-pressure algorithm. Despite having many salient features, the first-order sub gradient nature of the back-pressure based schemes results in slow convergence and poor delay performance. To overcome these limitations, the present study was made as first attempt at developing a second-order joint congestion control and routing optimization framework that offers utility-optimality, queue-stability, fast convergence, and low delay.  Contributions in this project are three-fold. The present study propose a new second-order joint congestion control and routing framework based on a primal-dual interior-point approach and established utility-optimality and queue-stability of the proposed second-order method. The results of present study showed that how to implement the proposed second-order method in a distributed fashion.


2010 ◽  
Vol 30 (1) ◽  
pp. 134-136
Author(s):  
Ying LIN ◽  
Li XU
Keyword(s):  

2013 ◽  
Vol 57 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Ting Xiong ◽  
Xiao Yan ◽  
Shanfang Huang ◽  
Junchong Yu ◽  
Yanping Huang

2015 ◽  
Vol 43 (2) ◽  
pp. 51-53 ◽  
Author(s):  
Pierre M. Fiorini ◽  
Lester Lipsky
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Jungchul Lee ◽  
Faheem Khan ◽  
Thomas Thundat ◽  
Bong Jae Lee

ABSTRACTThis paper reports doubly clamped microchannel embedded resonators with two independent and parallel channels integrated for effective sample density tuning for the first time. With the aid of such a unique design, each fluidic channel can be independently accessed thus different liquid samples can be loaded simultaneously. The proposed fluidic resonators are batch fabricated by depositing silicon nitride, polysilicon, and silicon nitride sequentially on top of a set of 4-inch silicon wafers and sacrificing the middle polysilicon layer with potassium hydroxide (KOH). The sacrificial process defines two parallel channels and releases doubly clamped beam resonators simultaneously. In addition, an off-chip vacuum clamp with optical and fluidic access is custom-made to operate each resonator with enhanced quality factor. The microfluidic resonators mounted on the custom vacuum clamp are thoroughly characterized with a laser Doppler vibrometer and used to measure the effective sample density ranging from 395 to 998 kg/m3.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Aryan Afzalian

AbstractUsing accurate dissipative DFT-NEGF atomistic-simulation techniques within the Wannier-Function formalism, we give a fresh look at the possibility of sub-10-nm scaling for high-performance complementary metal oxide semiconductor (CMOS) applications. We show that a combination of good electrostatic control together with high mobility is paramount to meet the stringent roadmap targets. Such requirements typically play against each other at sub-10-nm gate length for MOS transistors made of conventional semiconductor materials like Si, Ge, or III–V and dimensional scaling is expected to end ~12 nm gate-length (pitch of 40 nm). We demonstrate that using alternative 2D channel materials, such as the less-explored HfS2 or ZrS2, high-drive current down to ~6 nm is, however, achievable. We also propose a dynamically doped field-effect transistor concept, that scales better than its MOSFET counterpart. Used in combination with a high-mobility material such as HfS2, it allows for keeping the stringent high-performance CMOS on current and competitive energy-delay performance, when scaling down to virtually 0 nm gate length using a single-gate architecture and an ultra-compact design (pitch of 22 nm). The dynamically doped field-effect transistor further addresses the grand-challenge of doping in ultra-scaled devices and 2D materials in particular.


Sign in / Sign up

Export Citation Format

Share Document