scholarly journals Give me a hint: An ID-free small data transmission protocol for dense IoT devices

Author(s):  
Yi Ren ◽  
Ren-Jie Wu ◽  
Teng-Wei Huang ◽  
Yu-Chee Tseng
2021 ◽  
Author(s):  
Subin narayanan ◽  
Dimitris Tsolkas ◽  
Nikos Passas ◽  
Andreas Höglund ◽  
Olof Liberg

<div>The effective support of 5G-Internet of Things (IoT) requires cellular service in deep coverage areas while providing long battery life for IoT devices which perform infrequent small data transmission towards the base station. Relaying is a promising solution to extend the coverage while at the same time meeting the battery life requirements of the IoT devices. Considering this, we analyze the suitability of layer-3 relaying over the 3GPP Release 16 NR-PC5 interface to support massive IoT applications. More precisely, we study the unicast connection establishment mechanism over the NR PC5 interface in a partial coverage scenario. Further, a set of optimizations on the Release 16 NR-PC5 procedure to effectively support massive IoT applications are proposed and analyzed. The obtained performance evaluation results which are presented in terms of data success probability, device power consumption, and signaling overhead, quantify how effectively the Release 16 NR-PC5 interface can support the requirement of IoT in the 5G and beyond era. The proposed sidelink small data transmission and frame-level access provides the largest gain overall and can reduce the device power consumption by an average of 68%, and signaling overhead by 15% while maintaining a data success probability of more than 90% in an IMT-2020 defined IoT traffic scenario.</div>


2021 ◽  
Author(s):  
Subin narayanan ◽  
Dimitris Tsolkas ◽  
Nikos Passas ◽  
Andreas Höglund ◽  
Olof Liberg

<div>The effective support of 5G-Internet of Things (IoT) requires cellular service in deep coverage areas while providing long battery life for IoT devices which perform infrequent small data transmission towards the base station. Relaying is a promising solution to extend the coverage while at the same time meeting the battery life requirements of the IoT devices. Considering this, we analyze the suitability of layer-3 relaying over the 3GPP Release 16 NR-PC5 interface to support massive IoT applications. More precisely, we study the unicast connection establishment mechanism over the NR PC5 interface in a partial coverage scenario. Further, a set of optimizations on the Release 16 NR-PC5 procedure to effectively support massive IoT applications are proposed and analyzed. The obtained performance evaluation results which are presented in terms of data success probability, device power consumption, and signaling overhead, quantify how effectively the Release 16 NR-PC5 interface can support the requirement of IoT in the 5G and beyond era. The proposed sidelink small data transmission and frame-level access provides the largest gain overall and can reduce the device power consumption by an average of 68%, and signaling overhead by 15% while maintaining a data success probability of more than 90% in an IMT-2020 defined IoT traffic scenario.</div>


2021 ◽  
Vol 13 (15) ◽  
pp. 8120
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla S. Hossain Lipu ◽  
Mohamad Hanif Md Saad ◽  
Aini Hussain

Solar photovoltaic (PV) is one of the prominent sustainable energy sources which shares a greater percentage of the energy generated from renewable resources. As the need for solar energy has risen tremendously in the last few decades, monitoring technologies have received considerable attention in relation to performance enhancement. Recently, the solar PV monitoring system has been integrated with a wireless platform that comprises data acquisition from various sensors and nodes through wireless data transmission. However, several issues could affect the performance of solar PV monitoring, such as large data management, signal interference, long-range data transmission, and security. Therefore, this paper comprehensively reviews the progress of several solar PV-based monitoring technologies focusing on various data processing modules and data transmission protocols. Each module and transmission protocol-based monitoring technology is investigated with regard to type, design, implementations, specifications, and limitations. The critical discussion and analysis are carried out with respect to configurations, parameters monitored, software, platform, achievements, and suggestions. Moreover, various key issues and challenges are explored to identify the existing research gaps. Finally, this review delivers selective proposals for future research works. All the highlighted insights of this review will hopefully lead to increased efforts toward the enhancement of the monitoring technologies in future sustainable solar PV applications.


Author(s):  
Takumi Saito ◽  
Shigenari Nakamura ◽  
Tomoya Enokido ◽  
Makoto Takizawa

Sensors ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 487 ◽  
Author(s):  
Nadeem Javaid ◽  
Mehreen Shah ◽  
Ashfaq Ahmad ◽  
Muhammad Imran ◽  
Majid Khan ◽  
...  

Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.


2015 ◽  
Vol 22 (2) ◽  
pp. 221-228
Author(s):  
Marek Wójcikowski

Abstract In this paper a prototype framework for simulation of wireless sensor network and its protocols are presented. The framework simulates operation of a sensor network with data transmission, which enables simultaneous development of the sensor network software, its hardware and the protocols for wireless data transmission. An advantage of using the framework is converging simulation with the real software. Instead of creating a model of the sensor network node, the same software is used in real sensor network nodes and in the simulation framework. Operation of the framework is illustrated with examples of simulations of selected transactions in the sensor network.


Sign in / Sign up

Export Citation Format

Share Document