scholarly journals An Optimal Multilevel Encryption Technique for Securing the Data Transmission in IoT

Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.

internet of things is now everywhere and even if people are aware of it or not, it is part of our everyday life. For something that is so much in pace with our life, iot collects a lot of information about our day today life, which in case of a data leak or hijacking could lead to catastrophic effects in the society. Still iot devices are not manufactured keeping in mind the security factor. This paper dives into the problem of spoofing attacks dealt by iot devices and comes up with an authentication mechanism, which uses variants of elliptic curve cryptography to protect against such said attacks without exhausting the devices in case of computational power and storage area. The experimentation clearly revealed the strength of the scheme to mitigate spoofing attacks on the iot home networks.


2021 ◽  
Vol 13 (6) ◽  
pp. 19-39
Author(s):  
Padmashree M G ◽  
Mallikarjun J P ◽  
Arunalatha J S ◽  
Venugopal K R

The Internet of Things (IoT) is an extensive system of networks and connected devices with minimal human interaction and swift growth. The constraints of the System and limitations of Devices pose several challenges, including security; hence billions of devices must protect from attacks and compromises. The resource-constrained nature of IoT devices amplifies security challenges. Thus standard data communication and security measures are inefficient in the IoT environment. The ubiquity of IoT devices and their deployment in sensitive applications increase the vulnerability of any security breaches to risk lives. Hence, IoT-related security challenges are of great concern. Authentication is the solution to the vulnerability of a malicious device in the IoT environment. The proposed Multi-level Elliptic Curve Cryptography based Key Distribution and Authentication in IoT enhances the security by Multi-level Authentication when the devices enter or exit the Cluster in an IoT system. The decreased Computation Time and Energy Consumption by generating and distributing Keys using Elliptic Curve Cryptography extends the availability of the IoT devices. The Performance analysis shows the improvement over the Fast Authentication and Data Transfer method.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1925
Author(s):  
Soe Ye Yint Tun ◽  
Samaneh Madanian ◽  
Dave Parry

The elderly population is increasing globally, putting more pressure on aged care and public health systems. To address this issue and help increase the independence of older people, different digital technologies, including the Internet of things (IoT), can play an important role. Although there has been an increase in the number of studies in this field, most of them concentrate on IoT applications in elderly care from a technology perspective, with very little contribution from the clinical side. Therefore, this paper aims to investigate and identify the available IoT applications and their clinical utility for common diseases in elderly people. The results of this study could be useful for information technology professionals in developing and understanding the clinical requirements for IoT applications in healthcare for older people. Clinicians will also be informed about the clinical possibilities of using IoT devices in this area. Based on our findings, future research should focus on enhancing the clinical utility of current IoT applications in different settings and on developing new applications to support practitioners and older people.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6846
Author(s):  
Ngoc-Thanh Dinh ◽  
Young-Han Kim

Existing caching mechanisms considers content objects individually without considering the semantic correlation among content objects. We argue that this approach can be inefficient in Internet of Things due to the highly redundant nature of IoT device deployments and the data accuracy tolerance of IoT applications. In many IoT applications, an approximate answer is acceptable. Therefore, a cache of an information object having a high semantic correlation with the requested information object can be used instead of a cache of the exact requested information object. In this case, caching both of the information objects can be inefficient and redundant. This paper proposes a caching retrieval scheme which considers the semantic information correlation of information objects of nodes for cache retrieval. We illustrate the benefits of considering the semantic information correlation in caching by studying IoT data caching at the edge. Our experiments and analysis show that semantic correlated caching can significantly improve the efficiency, cache hit, and reduce the resource consumption of IoT devices.


Sign in / Sign up

Export Citation Format

Share Document