Spatial Patterns in Surface Energy Balance Components Derived from Remotely Sensed Data

2000 ◽  
Vol 52 (2) ◽  
pp. 272-288 ◽  
Author(s):  
Karen Humes ◽  
Ray Hardy ◽  
William Kustas
1994 ◽  
Vol 30 (5) ◽  
pp. 1339-1349 ◽  
Author(s):  
M. S. Moran ◽  
W. P. Kustas ◽  
A. Vidal ◽  
D. I. Stannard ◽  
J. H. Blanford ◽  
...  

2016 ◽  
Vol 8 (8) ◽  
pp. 644 ◽  
Author(s):  
Suhua Liu ◽  
Hongbo Su ◽  
Renhua Zhang ◽  
Jing Tian ◽  
Shaohui Chen ◽  
...  

2021 ◽  
Vol 25 (2) ◽  
pp. 755-768
Author(s):  
María P. González-Dugo ◽  
Xuelong Chen ◽  
Ana Andreu ◽  
Elisabet Carpintero ◽  
Pedro J. Gómez-Giraldez ◽  
...  

Abstract. Drought is a devastating natural hazard that is difficult to define, detect and quantify. The increased availability of both meteorological and remotely sensed data provides an opportunity to develop new methods to identify drought conditions and characterize how drought changes over space and time. In this paper, we applied the surface energy balance model, SEBS (Surface Energy Balance System), for the period 2001–2018, to estimate evapotranspiration and other energy fluxes over the dehesa area of the Iberian Peninsula, with a monthly temporal resolution and 0.05∘ pixel size. A satisfactory agreement was found between the fluxes modeled and the measurements obtained for 3 years by two flux towers located over representative sites (RMSD = 21 W m−2 and R2=0.76, on average, for all energy fluxes and both sites). The estimations of the convective fluxes (LE and H) showed higher deviations, with RMSD = 26 W m−2 on average, than Rn and G, with RMSD = 15 W m−2. At both sites, annual evapotranspiration (ET) was very close to total precipitation, with the exception of a few wet years in which intense precipitation events that produced high runoff were observed. The analysis of the anomalies of the ratio of ET to reference ET (ETo) was used as an indicator of agricultural drought on monthly and annual scales. The hydrological years 2004/2005 and 2011/2012 stood out for their negative values. The first one was the most severe of the series, with the highest impact observed on vegetation coverage and grain production. On a monthly scale, this event was also the longest and most intense, with peak negative values in January–February and April–May 2005, explaining its great impact on cereal production (up to 45 % reduction). During the drier events, the changes in the grasslands' and oak trees' ground cover allowed for a separate analysis of the strategies adopted by the two strata to cope with water stress. These results indicate that the drought events characterized for the period did not cause any permanent damage to the vegetation of dehesa systems. The approach tested has proven useful for providing insight into the characteristics of drought events over this ecosystem and will be helpful to identify areas of interest for future studies at finer resolutions.


2019 ◽  
Vol 11 (11) ◽  
pp. 1289 ◽  
Author(s):  
William Senkondo ◽  
Subira E. Munishi ◽  
Madaka Tumbo ◽  
Joel Nobert ◽  
Steve W. Lyon

Evapotranspiration (ET) plays a crucial role in integrated water resources planning, development and management, especially in tropical and arid regions. Determining ET is not straightforward due to the heterogeneity and complexity found in real-world hydrological basins. This situation is often compounded in regions with limited hydro-meteorological data that are facing rapid development of irrigated agriculture. Remote sensing (RS) techniques have proven useful in this regard. In this study, we compared the daily actual ET estimates derived from 3 remotely-sensed surface energy balance (SEB) models, namely, the Surface Energy Balance Algorithm for Land (SEBAL) model, the Operational Simplified Surface Energy Balance (SSEBop) model, and the Simplified Surface Balance Index (S-SEBI) model. These products were generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery for a total of 44 satellite overpasses in 2005, 2010, and 2015 in the heterogeneous, highly-utilized, rapidly-developing and data-limited Kilombero Valley (KV) river basin in Tanzania, eastern Africa. Our results revealed that the SEBAL model had a relatively high ET compared to other models and the SSEBop model had relatively low ET compared to the other models. In addition, we found that the S-SEBI model had a statistically similar ET as the ensemble mean of all models. Further comparison of SEB models’ ET estimates across different land cover classes and different spatial scales revealed that almost all models’ ET estimates were statistically comparable (based on the Wilcoxon’s test and the Levene’s test at a 95% confidence level), which implies fidelity between and reliability of the ET estimates. Moreover, all SEB models managed to capture the two spatially-distinct ET regimes in KV: the stable/permanent ET regime on the mountainous parts of the KV and the seasonally varied ET over the floodplain which contains a Ramsar site (Kilombero Valley Floodplain). Our results have the potential to be used in hydrological modelling to explore and develop integrated water resources management in the valley. We believe that our approach can be applied elsewhere in the world especially where observed meteorological variables are limited.


Sign in / Sign up

Export Citation Format

Share Document