scholarly journals Regional Estimation of Remotely Sensed Evapotranspiration Using the Surface Energy Balance-Advection (SEB-A) Method

2016 ◽  
Vol 8 (8) ◽  
pp. 644 ◽  
Author(s):  
Suhua Liu ◽  
Hongbo Su ◽  
Renhua Zhang ◽  
Jing Tian ◽  
Shaohui Chen ◽  
...  
1994 ◽  
Vol 30 (5) ◽  
pp. 1339-1349 ◽  
Author(s):  
M. S. Moran ◽  
W. P. Kustas ◽  
A. Vidal ◽  
D. I. Stannard ◽  
J. H. Blanford ◽  
...  

2019 ◽  
Vol 11 (11) ◽  
pp. 1289 ◽  
Author(s):  
William Senkondo ◽  
Subira E. Munishi ◽  
Madaka Tumbo ◽  
Joel Nobert ◽  
Steve W. Lyon

Evapotranspiration (ET) plays a crucial role in integrated water resources planning, development and management, especially in tropical and arid regions. Determining ET is not straightforward due to the heterogeneity and complexity found in real-world hydrological basins. This situation is often compounded in regions with limited hydro-meteorological data that are facing rapid development of irrigated agriculture. Remote sensing (RS) techniques have proven useful in this regard. In this study, we compared the daily actual ET estimates derived from 3 remotely-sensed surface energy balance (SEB) models, namely, the Surface Energy Balance Algorithm for Land (SEBAL) model, the Operational Simplified Surface Energy Balance (SSEBop) model, and the Simplified Surface Balance Index (S-SEBI) model. These products were generated using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery for a total of 44 satellite overpasses in 2005, 2010, and 2015 in the heterogeneous, highly-utilized, rapidly-developing and data-limited Kilombero Valley (KV) river basin in Tanzania, eastern Africa. Our results revealed that the SEBAL model had a relatively high ET compared to other models and the SSEBop model had relatively low ET compared to the other models. In addition, we found that the S-SEBI model had a statistically similar ET as the ensemble mean of all models. Further comparison of SEB models’ ET estimates across different land cover classes and different spatial scales revealed that almost all models’ ET estimates were statistically comparable (based on the Wilcoxon’s test and the Levene’s test at a 95% confidence level), which implies fidelity between and reliability of the ET estimates. Moreover, all SEB models managed to capture the two spatially-distinct ET regimes in KV: the stable/permanent ET regime on the mountainous parts of the KV and the seasonally varied ET over the floodplain which contains a Ramsar site (Kilombero Valley Floodplain). Our results have the potential to be used in hydrological modelling to explore and develop integrated water resources management in the valley. We believe that our approach can be applied elsewhere in the world especially where observed meteorological variables are limited.


2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


Sign in / Sign up

Export Citation Format

Share Document