scholarly journals Metabolic scaling across succession: Do individual rates predict community‐level energy use?

2018 ◽  
Vol 32 (6) ◽  
pp. 1447-1456 ◽  
Author(s):  
Giulia Ghedini ◽  
Craig R. White ◽  
Dustin J. Marshall
2021 ◽  
Author(s):  
Renata M. Diaz ◽  
S. K. Morgan Ernest

AbstractUnderstanding the ecological processes that maintain community function in systems experiencing species loss, and how these processes change over time, is key to understanding the relationship between community structure and function and predicting how communities may respond to perturbations in the Anthropocene. Using a 30-year experiment on desert rodents, we show that the impact of species loss on community-level energy use has changed dramatically over time, due to changes in both species composition and in the degree of functional redundancy among the same set of species. Although strong compensation, initially driven by the dispersal of functionally redundant species to the local community, occurred in this system from 1996-2010, since 2010, compensation has broken down due to decreasing functional overlap within the same set of species. Simultaneously, long-term changes in sitewide community composition due to niche complementarity have decoupled the dynamics of compensation from the overall impact of species loss on community-level energy use. These results highlight the importance of explicitly long-term, metacommunity, and eco-evolutionary perspectives on compensatory dynamics, zero-sum constraints, and the link between species-level fluctuations and community function in a changing world.Original submissionThis submission analyzes long-term data on rodent community abundance and energy use from the Portal Project. Sections of this timeseries have been analyzed in numerous other publications, but this is the first to analyze data from 2007-2020 on compensation on experimental and control plots.No prior publicationThis submission is posted as a preprint on bioRxiv at [bioRxiv].Animal welfareRodent censuses were conducted with IACUC approval, most recently under protocol 201808839_01 at the University of Florida.Open researchAll data and code to reproduce these analyses are archived on Zenodo at https://doi.org/10.5281/zenodo.5544362 and https://doi.org/10.5281/zenodo.5539881.Analytic methodsAll analyses were conducted in R version 4.0.3.


Author(s):  
David A. Thurlow ◽  
Ben D. Sawyer

New advancements in vehicle automation, electrification, data connectivity, and digital methods of sharing—known collectively as New Mobility—are poised to revolutionize transportation as it is known today. Exactly what results this disruption will lead to, however, remains unknown, as indeed the technologies and their uses are still taking shape amidst myriad interests. The impacts of this shift to New Mobility could be enormous, shaping economies, cities, and the lives of people in them. It is therefore vitally important for public interests to play a strong role in the development and deployment of these technologies. With the current trajectory of these technologies warning of the potential for increased energy use, environmental costs, and social inequity, interests at the community level need to be included and influential as soon as possible.


2021 ◽  
Author(s):  
Craig Brown

The quest to ‘green’ the built environment has been ongoing since the early 1970s and has intensified as the threat of exceeding 450 ppm of atmospheric carbon dioxide has become more real. As a result of this, many contemporary residential high-rise buildings are designed with hopes of achieving carbon emission reductions, while not sacrificing occupant satisfaction, or property value. Little is known about how the occupants of these buildings contribute to the energy and water consumed therein, nor the effects that these design aspirations have on occupant satisfaction. The present study relies on data collected in four recently built, Leadership in Energy and Environmental Design [LEED] certified, high-rise, residential buildings in Ontario, Canada. Using various sources of data (i.e., from energy and water submeters, questionnaire responses, interviews, and physical data relating to each suite) the extent to which physical, behavioural, and demographic variables explain suite-level energy and water consumption was explored. Energy use intensity differed by a factor of 7 between similar suites, electricity by a factor of 5, hot water by a factor of 13, cooling by a factor of 47, and heating by a factor of 67. Results show that physical building characteristics explain 43% of the heating variability, 16% of the cooling variability, and 40% of electricity variability, suggesting that the remainders could be a result of occupant behaviour and demographics. It was also discovered that 52% of respondents were not using their energy recovery ventilators [ERV] for the following reasons: acoustic dissatisfaction, difficulty with accessibility of filters, occupant knowledge and preferences, and a lack of engagement with training materials. Results suggest that abandoning mechanical ventilation in favour of passive ventilation could actually lead to greater satisfaction with indoor air quality and to decreased energy consumption. Using content analysis of questionnaire comments, the utility of contextual factors in understanding energy use and satisfaction in the study buildings, as well as their value in producing feedback for designers and managers, was explored. Combining quantitative and qualitative datasets was an effective approach to understanding energy use in this understudied building type.


2021 ◽  
Author(s):  
Craig Brown

The quest to ‘green’ the built environment has been ongoing since the early 1970s and has intensified as the threat of exceeding 450 ppm of atmospheric carbon dioxide has become more real. As a result of this, many contemporary residential high-rise buildings are designed with hopes of achieving carbon emission reductions, while not sacrificing occupant satisfaction, or property value. Little is known about how the occupants of these buildings contribute to the energy and water consumed therein, nor the effects that these design aspirations have on occupant satisfaction. The present study relies on data collected in four recently built, Leadership in Energy and Environmental Design [LEED] certified, high-rise, residential buildings in Ontario, Canada. Using various sources of data (i.e., from energy and water submeters, questionnaire responses, interviews, and physical data relating to each suite) the extent to which physical, behavioural, and demographic variables explain suite-level energy and water consumption was explored. Energy use intensity differed by a factor of 7 between similar suites, electricity by a factor of 5, hot water by a factor of 13, cooling by a factor of 47, and heating by a factor of 67. Results show that physical building characteristics explain 43% of the heating variability, 16% of the cooling variability, and 40% of electricity variability, suggesting that the remainders could be a result of occupant behaviour and demographics. It was also discovered that 52% of respondents were not using their energy recovery ventilators [ERV] for the following reasons: acoustic dissatisfaction, difficulty with accessibility of filters, occupant knowledge and preferences, and a lack of engagement with training materials. Results suggest that abandoning mechanical ventilation in favour of passive ventilation could actually lead to greater satisfaction with indoor air quality and to decreased energy consumption. Using content analysis of questionnaire comments, the utility of contextual factors in understanding energy use and satisfaction in the study buildings, as well as their value in producing feedback for designers and managers, was explored. Combining quantitative and qualitative datasets was an effective approach to understanding energy use in this understudied building type.


2021 ◽  
Author(s):  
Marta Baltruszewicz ◽  
Julia Steinberger ◽  
Diana Ivanova ◽  
Lina Brand-Correa ◽  
Jouni Paavola ◽  
...  

<p>The link between energy use, social and environmental well-being is at the root of critical synergies between clean and affordable energy (SDG7) and other SDGs. Household-level quantitative energy analyses enable better understanding regarding interconnections between the level and composition of energy use, and SDG achievement. This study examines the household-level energy footprints in Nepal, Vietnam, and Zambia. We calculate the footprints using multi-regional input-output (MRIO) with energy extensions based on International Energy Agency (IEA) data. We propose an original perspective on the links between household final energy use and well-being, measured through access to safe water, health, education, sustenance, and modern fuels. In all three countries, households with high well-being show much lower housing energy use, due to a transition from inefficient<br>biomass-based traditional fuels to efficient modern fuels, such as gas and electricity. We find that households achieving wellbeing have 60-80% lower energy footprint of residential fuel use compared to average across the countries. We observe that collective provisioning systems in form of access to health centres, public transport, markets, and garbage disposal and characteristics linked to having solid shelter, access to sanitation, and minimum floor area are more important for the attainment of wellbeing than changes in income or total energy consumption. This is an important finding,  contradicting the narrative that basic wellbeing outcomes require increased income and individual consumption of energy. Substantial synergies exist between the achievement of well-being at a low level of energy use and other SDGs linked to poverty reduction (encompassed in SDG1), health (SDG3), sanitation (SDG6), gender equality (SDG5), climate action and reduced deforestation (SDG 13 and SDG15) and inequalities (SDG10). </p>


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 699 ◽  
Author(s):  
Yawen Han ◽  
Shigemi Kagawa ◽  
Fumiya Nagashima ◽  
Keisuke Nansai

Technology improvement related to energy conservation and energy mix low-carbonization is a critical approach for tackling global warming in China. Therefore, we attempt to identify the technology factors of China’s energy consumption change between 2007 and 2012, when China’s economy started slowing. This study proposes a new refined structural decomposition analysis (SDA) based on a hybrid multi-regional input–output (MRIO) model. The technology factors are expressed through the energy input level effect, energy composition effect, and non-energy input effect. We find that the energy level effect was the primary driver for energy reduction, saving 1205 million tonnes of standard coal equivalent (Mtce) of energy, while 520 Mtce was offset by energy composition and non-energy input effects. The sector analysis shows that the energy input level, energy composition, and non-energy input effects of electricity, the chemical industry, and metallurgy are noteworthy. In addition, the sector contribution to energy-use change, by province, related to the three effects, is also studied. From these results, we propose policy suggestions for further energy saving, in order to achieve China’s energy target through technology improvements by the higher priority contributors identified.


Paleobiology ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 478-494
Author(s):  
Indrė Žliobaitė ◽  
Mikael Fortelius

AbstractThe Red Queen's hypothesis portrays evolution as a never-ending competition for expansive energy, where one species’ gain is another species’ loss. The Red Queen is neutral with respect to body size, implying that neither small nor large species have a universal competitive advantage. Here we ask whether, and if so how, the Red Queen's hypothesis really can accommodate differences in body size. The maximum population growth in ecology clearly depends on body size—the smaller the species, the shorter the generation length, and the faster it can expand given sufficient opportunity. On the other hand, large species are more efficient in energy use due to metabolic scaling and can maintain more biomass with the same energy. The advantage of shorter generation makes a wide range of body sizes competitive, yet large species do not take over. We analytically show that individuals consume energy and reproduce in physiological time, but need to compete for energy in real time. The Red Queen, through adaptive evolution of populations, balances the pressures of real and physiological time. Modeling competition for energy as a proportional prize contest from economics, we further show that Red Queen's zero-sum game can generate unimodal hat-like patterns of species rise and decline that can be neutral in relation to body size.


2022 ◽  
pp. 890-909
Author(s):  
David A. Thurlow ◽  
Ben D. Sawyer

New advancements in vehicle automation, electrification, data connectivity, and digital methods of sharing—known collectively as New Mobility—are poised to revolutionize transportation as it is known today. Exactly what results this disruption will lead to, however, remains unknown, as indeed the technologies and their uses are still taking shape amidst myriad interests. The impacts of this shift to New Mobility could be enormous, shaping economies, cities, and the lives of people in them. It is therefore vitally important for public interests to play a strong role in the development and deployment of these technologies. With the current trajectory of these technologies warning of the potential for increased energy use, environmental costs, and social inequity, interests at the community level need to be included and influential as soon as possible.


Sign in / Sign up

Export Citation Format

Share Document