scholarly journals Oral delivery of pancreatitis‐associated protein by Lactococcus lactis displays protective effects in dinitro‐benzenesulfonic‐acid‐induced colitis model and is able to modulate the composition of the microbiota

2019 ◽  
Vol 21 (11) ◽  
pp. 4020-4031 ◽  
Author(s):  
Natalia M. Breyner ◽  
Priscilla Bagano Vilas Boas ◽  
Gabriel Fernandes ◽  
Rodrigo D. Carvalho ◽  
Tatiana Rochat ◽  
...  
2015 ◽  
Vol 82 (4) ◽  
pp. 1286-1294 ◽  
Author(s):  
Evelyn Durmaz ◽  
Yan Hu ◽  
Raffi V. Aroian ◽  
Todd R. Klaenhammer

ABSTRACTTheBacillus thuringiensiscrystal (Cry) protein Cry5B (140 kDa) and a truncated version of the protein, tCry5B (79 kDa), are lethal to nematodes. Genes encoding the two proteins were separately cloned into a high-copy-number vector with a strong constitutive promoter (pTRK593) inLactococcus lactisfor potential oral delivery against parasitic nematode infections. Western blots using a Cry5B-specific antibody revealed that constitutively expressed Cry5B and tCry5B were present in both cells and supernatants. To increase production,cry5Bwas cloned into the high-copy-number plasmid pMSP3535H3, carrying a nisin-inducible promoter. Immunoblotting revealed that 3 h after nisin induction, intracellular Cry5B was strongly induced at 200 ng/ml nisin, without adversely affecting cell viability or cell membrane integrity. Both Cry5B genes were also cloned into plasmid pTRK1061, carrying a promoter and encoding a transcriptional activator that invoke low-level expression of prophage holin and lysin genes inLactococcuslysogens, resulting in a leaky phenotype. Cry5B and tCry5B were actively expressed in the lysogenic strainL. lactisKP1 and released into cell supernatants without affecting culture growth. Lactate dehydrogenase (LDH) assays indicated that Cry5B, but not LDH, leaked from the bacteria. Lastly, using intracellular lysates fromL. lactiscultures expressing both Cry5B and tCry5B,in vivochallenges ofCaenorhabditis elegansworms demonstrated that the Cry proteins were biologically active. Taken together, these results indicate that active Cry5B proteins can be expressed intracellularly in and released extracellularly fromL. lactis, showing potential for future use as an anthelminthic that could be delivered orally in a food-grade microbe.


2017 ◽  
Vol 139 (2) ◽  
pp. 667-678.e5 ◽  
Author(s):  
Karina Stein ◽  
Stephanie Brand ◽  
André Jenckel ◽  
Anna Sigmund ◽  
Zhijian James Chen ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 1132-1145 ◽  
Author(s):  
Meiling Liu ◽  
Xiuxia Zhang ◽  
Yunpeng Hao ◽  
Jinhua Ding ◽  
Jing Shen ◽  
...  

Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).


Diabetes ◽  
2014 ◽  
Vol 63 (8) ◽  
pp. 2876-2887 ◽  
Author(s):  
S. Robert ◽  
C. Gysemans ◽  
T. Takiishi ◽  
H. Korf ◽  
I. Spagnuolo ◽  
...  

2014 ◽  
Vol 33 ◽  
pp. S247
Author(s):  
H. Miki ◽  
K. Tokuhara ◽  
M. Oishi ◽  
Y. Ueyama ◽  
Y. Nakamura ◽  
...  

2011 ◽  
Vol 63 (3) ◽  
pp. 439-446 ◽  
Author(s):  
Ying Liu ◽  
Jin Xiang ◽  
Min Liu ◽  
Shi Wang ◽  
Robert J. Lee ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1098
Author(s):  
Ananta Prasad Arukha ◽  
Christian Furlan Freguia ◽  
Meerambika Mishra ◽  
Jyoti K. Jha ◽  
Subhashinie Kariyawasam ◽  
...  

Inflammatory bowel disease (IBD) is characterized by gastrointestinal inflammation comprised of Crohn’s disease and ulcerative colitis. Centers for Disease Control and Prevention report that 1.3% of the population of the United States (approximately 3 million people) were affected by the disease in 2015, and the number keeps increasing over time. IBD has a multifactorial etiology, from genetic to environmental factors. Most of the IBD treatments revolve around disease management, by reducing the inflammatory signals. We previously identified the surface layer protein A (SlpA) of Lactobacillus acidophilus that possesses anti-inflammatory properties to mitigate murine colitis. Herein, we expressed SlpA in a clinically relevant, food-grade Lactococcus lactis to further investigate and characterize the protective mechanisms of the actions of SlpA. Oral administration of SlpA-expressing L. lactis (R110) mitigated the symptoms of murine colitis. Oral delivery of R110 resulted in a higher expression of IL-27 by myeloid cells, with a synchronous increase in IL-10 and cMAF in T cells. Consistent with murine studies, human dendritic cells exposed to R110 showed exquisite differential gene regulation, including IL-27 transcription, suggesting a shared mechanism between the two species, hence positioning R110 as potentially effective at treating colitis in humans.


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Yoojin Seo ◽  
Su-Jeong Oh ◽  
Ji-Su Ahn ◽  
Ye Young Shin ◽  
Ji Won Yang ◽  
...  

AbstractEmerging evidences have reported that periodontitis can be a risk factor for the pathogenesis of various systemic diseases. Porphyromonas gingivalis (Pg), one of the crucial pathogens in chronic periodontitis, has been spotlighted as a potential cause for the promotion and acceleration of periodontitis-associated systemic disorders. To investigate the association between Pg and intestinal disease or homeostasis, we treated Pg-derived lipopolysaccharide (LPS) in murine colitis model or intestinal organoid, respectively. Pg-derived LPS (Pg LPS) was administrated into chemically induced murine colitis model and disease symptoms were monitored compared with the infusion of LPS derived from E. coli (Ec LPS). Organoids isolated and cultured from mouse small intestine were treated with Pg or Ec LPS and further analyzed for the generation and composition of organoids. In vivo observations demonstrated that both Pg and Ec LPS exerted slight protective effects against murine colitis. Pg LPS did not affect the generation and growth of intestinal epithelial organoids. Among subtypes of epithelial cells, markers for stem cells, goblet cells or Paneth cells were changed in response to Pg LPS. Taken together, these results indicate that Pg LPS leads to partial improvement in colitis and that its treatment does not significantly affect the self-organization of intestinal organoids but may regulate the epithelial composition.


Author(s):  
Yue Chen ◽  
Lei Qiao ◽  
Xiaofan Song ◽  
Li Ma ◽  
Xina Dou ◽  
...  

Composite microecological agents have received widespread attention due to their advantageous properties, including safety, multi-effects, and low cost. This study was conducted to evaluate the protective effects of selenium (Se) nanoparticle-enriched Lactococcus lactis NZ9000 ( L. lactis NZ9000-SeNPs) against enterotoxigenic Escherichia coli K88 (ETEC K88)-induced intestinal barrier damage in C57BL/6 mice. Oral administration of L. lactis NZ9000-SeNPs significantly increased the villi height and the number of goblet cells in the ileum, and reduced the levels of serum and ileal interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and increased the activities of thioredoxin reductase (TrxR) and glutathione peroxidase (GSH-Px) compared with the ETEC K88-infected group not treated with L. lactis NZ9000-SeNPs. In addition, L. lactis NZ9000-SeNPs significantly attenuated the reduction of the expression levels of occludin and claudin-1, dysbiosis of the gut microbiome, and the activation of toll-like receptor (TLR)/nuclear factor-kappa (NF-κB)-mediated signaling pathway induced by ETEC K88. These findings suggested that L. lactis NZ9000-SeNPs may be a promising and safe Se supplement for food or feed additives. Importance The beneficial effects of microecological agents have been widely proven. Se, which is nutritionally essential trace element for human and animals, is incorporated into selenoproteins that have a wide range of pleiotropic effects, ranging from antioxidant and anti-inflammatory effects. However, the sodium selenite, a common addition form of Se in feed and food, has disadvantages such as strong toxicity and low bioavailability. We investigated the protective effects of L. lactis NZ9000-SeNPs against ETEC K88-induced intestinal barrier injury in C57BL/6 mice. Our results show that L. lactis NZ9000-SeNPs effectively alleviate ETEC-K88-induced intestinal barrier dysfunction. This study highlights the importance of developing a promising and safe Se supplement for the substation of sodium selenite applied in food, feed and biomedicine.


2017 ◽  
Vol 101 (20) ◽  
pp. 7653-7662 ◽  
Author(s):  
Junchao Lang ◽  
Xiaoke Wang ◽  
Kunfeng Liu ◽  
Dongmei He ◽  
Pancong Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document