A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions

Author(s):  
Shahzad Farooq ◽  
Abdullah ◽  
Hui Zhang ◽  
Jochen Weiss
2021 ◽  
Author(s):  
Abbas Jabermoradi ◽  
Suyeon Yang ◽  
Martijn Gobes ◽  
John P.M. van Duynhoven ◽  
Johannes Hohlbein

Turbidity poses a major challenge for the microscopic characterization of many food systems. In these systems, local mismatches in refractive indices can cause reflection, absorption and scattering of incoming as well as outgoing light leading to significant image deterioration along sample depth. To mitigate the issue of turbidity and to increase the achievable optical resolution, we combined adaptive optics (AO) with single-molecule localization microscopy (SMLM). Building on our previously published open hardware microscopy framework, the miCube, we first added a deformable mirror to the detection path. This element enables both the compensation of aberrations directly from single-molecule data and, by further modulating the emission wavefront, the introduction of various point spread functions (PSFs) to enable SMLM in three dimensions. We further added a top hat beam shaper to the excitation path to obtain an even illumination profile across the field of view (FOV). As a model system for a non-transparent food colloid in which imaging in depth is challenging, we designed an oil-in-water emulsion in which phosvitin, a ferric ion binding protein present in from egg yolk, resides at the oil water interface. We targeted phosvitin with fluorescently labelled primary antibodies and used PSF engineering to obtain 2D and 3D images of phosvitin covered oil droplets with sub 100 nm resolution. Droplets with radii as low as 200 nm can be discerned, which is beyond the range of conventional confocal light microscopy. Our data indicated that in the model emulsion phosvitin is homogeneously distributed at the oil-water interface. With the possibility to obtain super-resolved images in depth of nontransparent colloids, our work paves the way for localizing biomacromolecules at colloidal interfaces in heterogeneous food emulsions.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1278
Author(s):  
Suyeon Yang ◽  
Aletta A. Verhoeff ◽  
Donny W. H. Merkx ◽  
John P. M. van Duynhoven ◽  
Johannes Hohlbein

Lipid oxidation in food emulsions is mediated by emulsifiers in the water phase and at the oil–water interface. To unravel the physico-chemical mechanisms and to obtain local lipid and protein oxidation rates, we used confocal laser scanning microscopy (CLSM), thereby monitoring changes in both the fluorescence emission of a lipophilic dye BODIPY 665/676 and protein auto-fluorescence. Our data show that the removal of lipid-soluble antioxidants from mayonnaises promotes lipid oxidation within oil droplets as well as protein oxidation at the oil–water interface. Furthermore, we demonstrate that ascorbic acid acts as either a lipid antioxidant or pro-oxidant depending on the presence of lipid-soluble antioxidants. The effects of antioxidant formulation on local lipid and protein oxidation rates were all statistically significant (p < 0.0001). The observed protein oxidation at the oil–water interface was spatially heterogeneous, which is in line with the heterogeneous distribution of lipoprotein granules from the egg yolk used for emulsification. The impact of the droplet size on local lipid and protein oxidation rates was significant (p < 0.0001) but minor compared to the effects of ascorbic acid addition and lipid-soluble antioxidant depletion. The presented results demonstrate that CLSM can be applied for unraveling the roles of colloidal structure and transport in mediating lipid oxidation in complex food emulsions.


2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

1991 ◽  
Vol 56 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Takashi Kakiuchi ◽  
Mitsugi Senda

We have estimated the degree of polarizability of a polarized oil-water interface used as a working interface and that of the nonpolarizability of a nonpolarized interface used as a reference oil-water interface from the numerical calculation of dc and ac current vs potential behavior at both interfaces. Theoretical equations of dc and ac currents for simultaneous cation and anion transfer of supporting electrolytes have been derived for the planar stationary interface for reversible and quasi-reversible cases. In the derivation, the migration effect and the coupling of the cation and anion transfer have been incorporated. The transfer of ions constituting a supporting electrolyte contributes to the total admittance of the interface even in the region where the interface may be considered as polarized in dc sense, as pointed out first by Samec et al. (J. Electroanal. Chem. 126, 121 (1981)). Moreover, the reference oil-water interface is not ideally reversible, so that the contribution from this interface to the measured admittance cannot be negligible, unless the area of the reference oil-water interface is much larger than that of the working oil-water interface. The effect of non-ideality of the reference oil-water interface on the determination of double layer capacitances and kinetic parameters of charge transfer at the working oil-water interface has been estimated.


2020 ◽  
Vol 68 (31) ◽  
pp. 8471-8482
Author(s):  
Di Wu ◽  
Yalei Dai ◽  
Yunan Huang ◽  
Jin Gao ◽  
Hongshan Liang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document