Machine Learning Approaches as a Tool for Effective Offender Risk Prediction

2013 ◽  
Vol 12 (3) ◽  
pp. 507-510 ◽  
Author(s):  
William Rhodes
2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Jae-Geum Shim ◽  
Dong Woo Kim ◽  
Kyoung-Ho Ryu ◽  
Eun-Ah Cho ◽  
Jin-Hee Ahn ◽  
...  

2019 ◽  
Author(s):  
Shannon Wongvibulsin ◽  
Katherine C Wu ◽  
Scott L Zeger

BACKGROUND Despite the promise of machine learning (ML) to inform individualized medical care, the clinical utility of ML in medicine has been limited by the minimal interpretability and <i>black box</i> nature of these algorithms. OBJECTIVE The study aimed to demonstrate a general and simple framework for generating clinically relevant and interpretable visualizations of <i>black box</i> predictions to aid in the clinical translation of ML. METHODS To obtain improved transparency of ML, simplified models and visual displays can be generated using common methods from clinical practice such as decision trees and effect plots. We illustrated the approach based on postprocessing of ML predictions, in this case random forest predictions, and applied the method to data from the Left Ventricular (LV) Structural Predictors of Sudden Cardiac Death (SCD) Registry for individualized risk prediction of SCD, a leading cause of death. RESULTS With the LV Structural Predictors of SCD Registry data, SCD risk predictions are obtained from a random forest algorithm that identifies the most important predictors, nonlinearities, and interactions among a large number of variables while naturally accounting for missing data. The <i>black box</i> predictions are postprocessed using classification and regression trees into a clinically relevant and interpretable visualization. The method also quantifies the relative importance of an individual or a combination of predictors. Several risk factors (heart failure hospitalization, cardiac magnetic resonance imaging indices, and serum concentration of systemic inflammation) can be clearly visualized as branch points of a decision tree to discriminate between low-, intermediate-, and high-risk patients. CONCLUSIONS Through a clinically important example, we illustrate a general and simple approach to increase the clinical translation of ML through clinician-tailored visual displays of results from black box algorithms. We illustrate this general model-agnostic framework by applying it to SCD risk prediction. Although we illustrate the methods using SCD prediction with random forest, the methods presented are applicable more broadly to improving the clinical translation of ML, regardless of the specific ML algorithm or clinical application. As any trained predictive model can be summarized in this manner to a prespecified level of precision, we encourage the use of simplified visual displays as an adjunct to the complex predictive model. Overall, this framework can allow clinicians to peek inside the black box and develop a deeper understanding of the most important features from a model to gain trust in the predictions and confidence in applying them to clinical care.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Michela Sperti ◽  
Fabrizio D’Ascenzo ◽  
Luca Navarini ◽  
Giacomo Di Benedetto ◽  
Antonella Afeltra ◽  
...  

Machine Learning (ML) algorithms have proven promising methodologies in improving Cardiovascular (CV) risk predictors based on traditional statistics. In the present work, two case studies are reported: CV risk prediction in patients affected by Inflammatory Arthritis (IA), with attention to Psoriatic Arthritis (PsA), and patients who experienced Acute Coronary Syndrome (ACS).


2020 ◽  
Vol 9 (6) ◽  
pp. 1767 ◽  
Author(s):  
Charat Thongprayoon ◽  
Panupong Hansrivijit ◽  
Tarun Bathini ◽  
Saraschandra Vallabhajosyula ◽  
Poemlarp Mekraksakit ◽  
...  

Cardiac surgery-associated AKI (CSA-AKI) is common after cardiac surgery and has an adverse impact on short- and long-term mortality. Early identification of patients at high risk of CSA-AKI by applying risk prediction models allows clinicians to closely monitor these patients and initiate effective preventive and therapeutic approaches to lessen the incidence of AKI. Several risk prediction models and risk assessment scores have been developed for CSA-AKI. However, the definition of AKI and the variables utilized in these risk scores differ, making general utility complex. Recently, the utility of artificial intelligence coupled with machine learning, has generated much interest and many studies in clinical medicine, including CSA-AKI. In this article, we discussed the evolution of models established by machine learning approaches to predict CSA-AKI.


Burns ◽  
2015 ◽  
Vol 41 (5) ◽  
pp. 925-934 ◽  
Author(s):  
Neophytos Stylianou ◽  
Artur Akbarov ◽  
Evangelos Kontopantelis ◽  
Iain Buchan ◽  
Ken W. Dunn

Author(s):  
Mirza Rizwan Sajid ◽  
Bader A. Almehmadi ◽  
Waqas Sami ◽  
Mansour K. Alzahrani ◽  
Noryanti Muhammad ◽  
...  

Criticism of the implementation of existing risk prediction models (RPMs) for cardiovascular diseases (CVDs) in new populations motivates researchers to develop regional models. The predominant usage of laboratory features in these RPMs is also causing reproducibility issues in low–middle-income countries (LMICs). Further, conventional logistic regression analysis (LRA) does not consider non-linear associations and interaction terms in developing these RPMs, which might oversimplify the phenomenon. This study aims to develop alternative machine learning (ML)-based RPMs that may perform better at predicting CVD status using nonlaboratory features in comparison to conventional RPMs. The data was based on a case–control study conducted at the Punjab Institute of Cardiology, Pakistan. Data from 460 subjects, aged between 30 and 76 years, with (1:1) gender-based matching, was collected. We tested various ML models to identify the best model/models considering LRA as a baseline RPM. An artificial neural network and a linear support vector machine outperformed the conventional RPM in the majority of performance matrices. The predictive accuracies of the best performed ML-based RPMs were between 80.86 and 81.09% and were found to be higher than 79.56% for the baseline RPM. The discriminating capabilities of the ML-based RPMs were also comparable to baseline RPMs. Further, ML-based RPMs identified substantially different orders of features as compared to baseline RPM. This study concludes that nonlaboratory feature-based RPMs can be a good choice for early risk assessment of CVDs in LMICs. ML-based RPMs can identify better order of features as compared to the conventional approach, which subsequently provided models with improved prognostic capabilities.


Sign in / Sign up

Export Citation Format

Share Document